
TASK CONTEXT: A Tool for Predicting Code
Context Models for Software Development Tasks

Yifeng Wang
Zhejiang University
Hangzhou, China

yifeng.wang@zju.edu.cn

Yuhang Lin
Zhejiang University
Hangzhou, China
lin yh@zju.edu.cn

Zhiyuan Wan*
Zhejiang University
Hangzhou, China

wanzhiyuan@zju.edu.cn

Xiaohu Yang
Zhejiang University
Hangzhou, China

yangxh@zju.edu.cn

Abstract— A code context model consists of code elements
and their relations relevant to a development task. Previous
studies found that the explicit formation of code context models
can benefit software development practices, e.g., code navigation
and searching. However, little focus has been put on how to
proactively form code context models. In this paper, we propose
a tool named TASK CONTEXT for predicting code context models
and implement it as an Eclipse plug-in. TASK CONTEXT uses
the abstract topological patterns of how developers investigate
structurally connected code elements when performing tasks. The
tool captures the code elements navigated and searched by a
developer to construct an initial code context model. The tool
then applies abstract topological patterns with the initial code
context model as input and recommends code elements up to 3
steps away in the code structure from the initial code context
model. The experimental results indicate that our approach can
predict code context models effectively, with a significantly higher
F-measure than the state-of-the-art (0.57 over 0.23 on average).
Furthermore, the user study suggests that our tool can help
practitioners complete development tasks faster and more often
as compared to standard Eclipse mechanism.

Demo video: https://youtu.be/3yEPh6uvHI8
Repository: https://github.com/icsoft-zju/Task Context
Index Terms—Context Models, Task, Interaction, Context

Prediction

I. INTRODUCTION

As software developers perform development tasks, they
spend substantial time searching and navigating through code
in software systems. In the course of understanding the rel-
evant code, they form, in their minds, implicit code context
models consisting of source code elements and relations
between those elements relevant to the tasks [1]. When a
portion of such models can be made explicit, the information
in the models can benefit software developers and software
development projects. Prior studies show that making code
context models explicit in software tools can support code
recommendations [2], [3] and improve the quality of code
changes [4].

Previous studies proposed tools to help developers explicitly
capture code context models, e.g., Concern Graphs [5], Code
Bubbles [6], and Code Basket [7]. Concern Graphs enable
the developers to manually capture the code elements and
their relations in the code context models [5]. Code Bubbles
allow developers to create views of code fragments relative to

*Corresponding author.

development tasks being performed [6]. Code Basket provides
a canvas on which developers can organize code context
models to externalize their mental models [7]. These tools
help developers create code context models by themselves
after developers identify or navigate relevant code elements
for work being performed.

Despite the promise of improving software tools with ex-
plicit code context models, little focus has been put on how
to proactively form code context models, i.e., to predict code
elements in code context models. The proactive formation of
code context models would represent a collection of other code
elements and relationships a developer is likely to need to
draw on to complete the task, beyond a recommendation of
what is the next code element for the developer to consider.
Researchers used a variety of information to enable the proac-
tive formation of code context models, including the structural
information of source code (e.g., Suade [8]) and the history
data of development tasks [9]–[11].

In a recent study, Wan et al. [12] proposed an approach that
integrates structural information of source code and historical
data of tasks for the proactive formation of code context
models. The approach first constructs code context models
with user interaction histories collected as developers work
at different points of time in the development of a system.
From the code context models, the approach learns abstract
topological patterns of how developers investigate structurally
connected code elements. Finally, the approach applies the
learned patterns to enable a d-step prediction of future code
context models, where the predicted code elements are up to d
steps away in the structure from the code elements of interest
as navigated and searched by a developer.

In this paper, we strengthen the approach [12] by imple-
menting a tool as an Eclipse plug-in named TASK CONTEXT.
The tool captures the code elements a developer navigates and
searches when performing a development task, and constructs
an initial code context model. Taking the initial code context
model as input, the tool applies the abstract topological pat-
terns in a pattern base and recommends code elements relevant
to the current task.

We evaluate TASK CONTEXT with the interaction histories
of bug fixing tasks created and stored as part of the Eclipse
Mylyn open source project. The experimental results indicate
that our approach can predict code context models effectively,

create
Actions

MoveToCategory
MenuContributor

TaskContainer
Comparator

getSubMenu
Manager

create
Actions

moveTo
Categoty compare

MoveToCategory
MenuContributor

TaskContainer
Comparator

...
getSubMenu

Manager
create
Actions

moveTo
Categoty compare

MoveToCategory
MenuContributor

TaskContainer
Comparator

...

Expanded Code Context ModelInitial Code Context Model Expanded Model with Stereotypes

MoveToCategory
MenuContributor

create
Actions

MoveToCategory
MenuContributor

moveTo
Categoty

TaskContainer
Comparator compare

Create
Actions

moveTo
Categoty

MoveToCategory
MenuContributor

getSubMenu
Manager

MoveToCategory
MenuContributor

create
Actions

moveTo
Categoty

Matched Subgraphs

...

MoveToCategory
MenuContributor

getSubMenu
Manager

create
Actions

moveTo
Categoty compare

TaskContainer
Comparator

...
moveToCategory

1
2
3
4

compare
getSubMenuManager

5 ...

Predicted Code Context Model and Suggestion List

B. Code
Context Model

Expansion

C. Stereotype
Assignment

D. Pattern
Matching

E. Code
Context Model

Suggestion

...

Pattern Base

initial

expanded

Boudary

Collaborator
Collaborator-
Factory

declares
calls

Code
Element

Stereotype

Structural
Relation

I II III

IV
V

A developer navigates and searches relevant code
elements to perform the bug fixing task 266393 in
the Eclipse Mylyn open source project.

A. Initial Code
Context Model

Formation

Fig. 1. Running example and overall framework of TASK CONTEXT.

with a significantly higher F-measure than the state-of-the-art
approach Suade [8] (0.57 over 0.23 on average). In addition to
1-step prediction, which is supported by Suade, our approach
supports 2-step and 3-step predictions. Furthermore, we con-
duct a user study with 12 software practitioners to investigate
the effectiveness of TASK CONTEXT in practical use. The user
study suggests that practitioners, with additional support from
our tool, complete development tasks faster and more often
than those using standard Eclipse mechanism.

II. APPROACH

Fig. 1 illustrates the overall framework of TASK CONTEXT
with a running example of the bug fixing task 266393 in the
Mylyn project. The overall framework of our approach consists
of five steps: A. initial code context model formation, B. code
context model expansion, C. stereotype assignment, D. pattern
matching, and E. code context model suggestion, as described
in the following subsections.

A. Initial Code Context Model Formation

Our approach first captures the code elements accessed by
a developer and forms an initial code context model. We
consider four types of code elements, interface, class, method,
and field, as well as four structural relations among them,
inherits, implements, declares, and calls. The code elements
and their structural relations correspond to vertices and edges
in the code context model, respectively. Fig. 1(I) illustrates an
example initial code context model, which consists of two
class elements, MoveToCategoryMenuContributor
and TaskContainerComparator, and one method ele-
ment CreateActions.

B. Code Context Model Expansion

In this step, our approach expands the initial code context
model to include likely accessed code elements. Specifically,
our approach expands the initial model along its structural
relations with the prediction step d as the depth. The expanded
code context model includes additional structurally connected
code elements and their structural relations, as compared to
those in the initial model. With regard to the running example,
the expanded code context model includes multiple additional
code elements, e.g., a method element compare connected
with the class element TaskContainerComparator, as
shown in Fig. 1(II).

C. Stereotype Assignment

Our approach assigns stereotypes to code elements to ab-
stract from specific code elements. Stereotypes represent the
roles code elements play in a system and their behavioral
aspects and design intents. Specifically, our approach uses
JStereoCode [13] to assign stereotypes to the code elements
in the expanded code context model. As a result, our approach
forms an expanded model with stereotypes. As for the running
example, the class elements are assigned with the Boundary
stereotype, while the method elements are assigned with the
Collaborator and the Collaborator-Factory stereotypes, as
shown in Fig. 1(III).

D. Pattern Matching

Our approach relies on abstract topological patterns of how
developers investigate structurally connected code elements
during development tasks. Previous work [12] formed a pattern
base that includes such patterns mined from the Mylyn open
source project (see Section III-A for details). Our approach

first takes the pattern base and the expanded code context
model with stereotypes as input. Our approach then iterates
over each pattern in the pattern base and compares it with the
subgraphs in the expanded model with respect to the stereo-
types of their vertices. Once a match occurs, our approach
records the matched subgraph. Fig. 1(IV) shows six matched
subgraphs after pattern matching for the running example.

E. Code Context Model Suggestion

In this step, our approach suggests code elements in the
future code context model for the development task. Specif-
ically, our approach merges all the matched subgraphs and
calculates the confidence value for each code element in the
predicted code context model. The confidence value of each
code element indicates the frequency of occurrences across
the matched subgraphs. Our approach suggests the predicted
code elements with a list sorted by the confidence value for
the running example, as shown in Fig. 1(V).

III. TASK CONTEXT PLUG-IN

We implement our tool in the form of an Eclipse plug-in.
The following subsections describe how we form the pattern
base and implement the plug-in.

A. Pattern Base

TASK CONTEXT relies on abstract topological patterns
of how developers investigate structurally connected code
elements during development tasks to predict code context
models. To obtain such patterns, we collected 1,219 interaction
histories of bug fixing tasks from the Mylyn project and
broke each interaction history into two-hour working periods.
For each working period, we identified the code elements
and retrieved the history commit in the corresponding code
repository as the code snapshot(s). With the code snapshot(s)
as input, we extracted structural relations among the code el-
ements identified by Doxygen [14] and formed a code context
model for each working period. As a result, we compiled a
dataset of 1,887 code context models. Based on the dataset, we
used JStereoCode to assign stereotypes to the code elements
in the code context models and further adopted the gSpan
algorithm1 to mine abstract topological patterns in the models.
Each pattern represents a frequently occurring abstract graph
with stereotypes as its vertices. As a result, we obtained a
pattern base with 142 abstract topological patterns.

B. Tool Implementation

The plug-in consists of two views, Task Context and Sug-
gestions, as shown in Fig. 2 and Fig. 3. The plug-in captures
the code elements accessed by a developer in Eclipse and
constructs an initial code context model, which is displayed in
the Task Context view. The Suggestions view displays a list of
code elements recommended by our approach, with the infor-
mation of their stereotypes and confidence of the prediction.
We describe the implementation of our tool according to the
overall framework of the approach as follows:

1gspan-mining v0.2.2, https://pypi.org/project/gspan-mining

Fig. 2. Initial code context model in the Task Context view.

Fig. 3. Results of 1-step prediction in the Suggestions view.

Initial Code Context Model Formation. Our tool first uses
the org.eclipse.ui.ISelectionListener class to
record the code elements from the navigation and search-
ing events a developer performs during a development
task. Note that our tool supports recording the code
elements within a time window, which can be cus-
tomized by developers. To form the initial code context
model, our tool uses the getChildren method of the
org.eclipse.jdt.core.IType class to connect each
class element with its declared method and field elements.
Fig. 2 shows the tree structure of the initial code context model
in the Task Context view as for the running example.
Code Context Model Expansion. Our tool uses breadth-first
searching to expand the initial code context model along var-
ious relations (i.e., declares, inherits, implements, and calls),
and with the prediction step d as the depth. By default, our
tool expands the code context model 1 step away from the
initial code context model to enable 1-step prediction. The
developers are allowed to specify the prediction step, i.e., 1-
step, 2-step, and 3-step, which are supported by our tool. For
the declares relation, our tool uses the IType, IMethod, and
IField classes in the org.eclipse.jdt.core package
to search for structurally connected code elements. In terms
of the inherits, implements, and calls relations, our tool uses
the class hierarchy and call graph obtained from the abstract
syntax trees of the code elements.
Stereotype Assignment. After the completion of code
context model expansion, our tool bootstraps the
StereotypeIdentifier class in JStereoCode to
identify stereotypes of code elements in the expanded code
context model. The resulting stereotypes are recorded in the
StereotypedElement class. Thus, our tool leverages
the information recorded in the class and relates each code
element in the expanded model with its stereotype.
Pattern Matching. For each pattern in the pattern base, our
tool uses the VF3 algorithm [15] to find the subgraphs in the
expanded coed context model with stereotypes that match the
pattern. As a result, our tool generates a predicted code context
model by merging all matched subgraphs.
Code Context Model Suggestion. With the predicted code
context model, our tool first excludes the code elements
in the initial code context model and then calculates the

confidence values for the rest. The confidence value of a
code element denotes the ratio of its occurrence frequency
to the total number of matched subgraphs. Fig. 3 shows that
the Suggestions view displays the predicted code elements in
reverse order of their confidence values. The developers can
click the predicted code element and navigate to its source
code in the Eclipse Editor.

IV. EVALUATION

A. Quantitative Evaluation

To evaluate the effectiveness of our approach, we use the
dataset we collected from the interaction histories of the Mylyn
open source project from the year 2007 to 2011. The dataset
includes 1,887 code context models. We divide the dataset into
a training set and a test set. Specifically, given the sequential
nature of our dataset, we select the 1,254 code context models
from the year 2007 to 2009 (84%) as the training set and
the remaining 231 code context models from the year 2010
to 2011 (16%) as the test set. We mine abstract topological
patterns from the training set. Based on the test set, we
simulate the scenario when a developer starts a development
task, and our approach proactively forms the code context
model for the task.

We adopt the commonly used metric F-measure to measure
the effectiveness of prediction. The results show that our
approach achieves an average F-measure of 0.57 for 1-step
prediction, which is significantly higher than that of the state-
of-art approach Suade (0.23). In addition, our tool supports
2-step and 3-step predictions.

B. User Study

To investigate if our tool can help in practical use, we
conduct a user study with 12 participants, with 6 in the control
group and 6 in the experimental group. The participants in
the control and experimental groups are asked to perform
three real-world programming tasks in Eclipse, using standard
Eclipse mechanism and with additional support from our tool,
respectively. We compare the completion rates and time of
tasks between the two groups and collect feedback from our
participants through a post-study survey.
Participants. We recruit 12 participants (3 female, 9 male)
from our university and split them into two groups, i.e., control
and experimental. Each group has 4 undergraduate students
and 2 master students, with an average of 2.8 (control) and
2.3 (experimental) years of development experience.
Tasks. We select three real-world programming tasks with
three levels of difficulty (i.e., easy, medium, and hard) from
the bug fixing tasks in the Mylyn project by referring to their
fixing time and number of edits recorded in the interaction
histories. We further make some minor adjustments to the three
tasks, ensuring they are easy to understand.

• Task 1: sort list (easy, bug fixing task 266393) Modify the
existing comparator TaskContainerComparator.
Use it to sort the list of task categories.

TABLE I
RESULTS OF USER STUDY.

Control Group Experimental Group
Complete Avg. Time # Complete Avg. Time

Task 1 (easy) 2 10:40 4 8:55
Task 2 (medium) 2 14:57 3 14:27
Task 3 (hard) 2 17:51 4 14:45

• Task 2: adjust views (medium, bug fixing task 278485)
Create a new layout in the EditorUtil class. Apply
the new layout to two views.

• Task 3: change sorting method (hard, bug fixing task
213901) Implement a function of getting the activation
date of a task in the AbstractTask class. Make the
history list of tasks sorted by activation date.

Protocol. The participants in the control group are allowed
to use standard Eclipse mechanism, including searching and
navigation features in Eclipse. For the experimental group, the
participants can use our tool for additional support during the
tasks. We set the time limits at 15, 20, and 25 minutes for Task
1, Task 2, and Task 3, respectively. Note that the participants
have 5 minutes to get familiar with the code repository before
starting Task 1. After a participant submits the code for tasks
within time limits, we inspect the code to confirm whether
the task is correctly done. In addition, we perform a post-
study survey with the participants in the experimental group
to collect feedback on our tool.
Results. As shown in Table I, participants assisted by our tool
complete development tasks more often and with less time. On
one hand, only 2 participants in the control group complete
each task, while 4, 3, and 4 participants in the experimental
group complete Task 1, Task 2, and Task 3, respectively. On the
other hand, it takes the participants in the experimental group
16.4%, 3.3%, and 17.4% less time to complete the three tasks.

The post-study survey uses Likert-scale questions to collect
feedback on our tool from the participants. The majority of
the participants in the experimental group agree or strongly
agree that our tool is easy to use (4 out of 6), can reduce
their time of browsing and understanding code (6 out of 6),
and the predicted code elements are helpful (5 out of 6).

V. CONCLUSION AND FUTURE WORK

In this paper, we present TASK CONTEXT, a tool im-
plemented as an Eclipse plug-in to improve the proactive
formation of code context models. The tool leverages the
abstract topological patterns mined from interaction histories
and proactively forms code context models to help developers
perform software development tasks. Future work can extend
TASK CONTEXT to support more programming languages and
take into account the experience level or other background in-
formation of developers when predicting code context models.

VI. ACKNOWLEDGEMENTS

The authors kindly acknowledge support from the National
Key R&D Program of China (No. 2020YFB1005400) and
National Science Foundation of China (No. 62102358). This
is a demonstration paper that supplements the full research
paper [12].

REFERENCES

[1] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich,
“Developers’ code context models for change tasks,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 7–18.

[2] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’06/FSE-14. New York, NY, USA: Association for Comput-
ing Machinery, 2006, p. 1–11.

[3] R. Robbes and M. Lanza, “Improving code completion with program
history,” Automated Software Engineering, vol. 17, 06 2010.

[4] D. Cubranic and G. Murphy, “Hipikat: recommending pertinent software
development artifacts,” in 25th International Conference on Software
Engineering, 2003. Proceedings., 2003, pp. 408–418.

[5] M. P. Robillard and G. C. Murphy, “Concern graphs: Finding and
describing concerns using structural program dependencies,” in Proceed-
ings of the 24th International Conference on Software Engineering, ser.
ICSE ’02. New York, NY, USA: Association for Computing Machinery,
2002, p. 406–416.

[6] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code bubbles: A working
set-based interface for code understanding and maintenance,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’10. New York, NY, USA: Association for Computing
Machinery, 2010, p. 2503–2512.

[7] B. Biegel, S. Baltes, I. Scarpellini, and S. Diehl, “Codebasket: Making
developers’ mental model visible and explorable,” in Proceedings of the
Second International Workshop on Context for Software Development,
ser. CSD ’15. IEEE Press, 2015, p. 20–24.

[8] M. P. Robillard, “Topology analysis of software dependencies,” ACM
Trans. Softw. Eng. Methodol., vol. 17, no. 4, aug 2008.

[9] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ser. SIGSOFT ’06/FSE-14. New York, NY, USA: Association
for Computing Machinery, 2006, p. 1–11. [Online]. Available:
https://doi.org/10.1145/1181775.1181777

[10] R. Robbes and M. Lanza, “Improving code completion with program
history,” Automated Software Engineering, vol. 17, no. 2, pp. 181–212.

[11] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[12] Z. Wan, G. C. Murphy, and X. Xia, “Predicting code context models
for software development tasks,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’20. New York, NY, USA: Association for Computing Machinery,
2021, p. 809–820.

[13] L. Moreno and A. Marcus, “Jstereocode: automatically identifying
method and class stereotypes in java code,” in 2012 Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, 2012, pp. 358–361.

[14] D. Van Heesch, “Doxygen: Source code documentation generator tool,”
URL: http://www. doxygen. org, 2008.

[15] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Challenging the
time complexity of exact subgraph isomorphism for huge and dense
graphs with vf3,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 804–818, 2018.

