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Over the past two decades, deep learning has received tremendous success in developing software systems
across various domains. Deep learning frameworks have been proposed to facilitate the development of such
software systems, among which, PyTorch and TensorFlow stand out as notable examples. Considerable
attention focuses on exploring software engineering practices and addressing diverse technical aspects in
developing and deploying deep learning frameworks and software systems. Despite these efforts, little is known
about the open-source software communities involved in the development of deep learning frameworks.

In this paper, we perform a comparative investigation into the open-source software communities of the
two representative deep learning frameworks, PyTorch and TensorFlow. To facilitate the investigation, we
compile a dataset of 2,792 and 3,288 code commit authors, along with 9,826 and 19,750 participants engaged in
issue events on GitHub, from the two communities, respectively. With the dataset, we first characterize the
structures of the two communities by employing four operationalizations to classify contributors into various
roles and inspect the contributions made by common contributors across the two communities. We then
conduct a longitudinal analysis to characterize the evolution of the two communities across various releases,
in terms of the numbers of contributors with various roles and role transitions among contributors. Finally,
we explore the causal effects between community characteristics and the popularity of the two frameworks.

We find that the TensorFlow community harbors a larger base of contributors, encompassing a higher
proportion of core developers and a more extensive cohort of active users compared to the PyTorch community.
In terms of the technical background of the developers, 64.4% and 56.1% developers in the PyTorch and
TensorFlow communities are employed by the leading companies of the corresponding open-source software
projects, Meta and Google, respectively. 25.9% and 21.9% core developers in the PyTorch and TensorFlow
communities possess Ph.D. degrees, while 77.2% and 77.7% contribute to other machine learning or deep
learning open-source projects, respectively. Developers contributing to both communities demonstrate spatial
and temporal similarities to some extent in their pull requests across the respective projects. The evolution
of contributors with various roles exhibits a consistent upward trend over time in the PyTorch community.
Conversely, a noticeable turning point in the growth of contributors characterizes the evolution of the
TensorFlow community. Both communities show a statistically significant decreasing trend in the inflow
rates of core developers. Furthermore, we observe statistically significant causal effects between the expansion
of communities and retention of core developers and the popularity of deep learning frameworks. Based on our
findings, we discuss implications, provide recommendations for sustaining open-source software communities
of deep learning frameworks, and outline directions for future research.
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1 INTRODUCTION

Deep learning (DL), as a branch of machine learning (ML), has progressed dramatically over the
past two decades, from a laboratory curiosity to a practical technology in widespread commercial
use [55]. DL is receiving massive attention in developing software systems in many applications,
including autonomous vehicles [20], image recognition [54], natural language processing [28],
speech recognition [61] and disease diagnosis [35]. Various DL frameworks have been proposed to
facilitate the development of such software systems, including PyTorch [72], TensorFlow [3],
Keras [23], Google JAX [16], and Deeplearning4j [38]. Among the frameworks, PyTorch and
TensorFlow are the two representative ones that are developed and maintained by open-source
software (OSS) communities [37].
Considerable attention in practice focuses on the construction of robust pipelines for training

and deploying DL models in a scalable fashion [29, 58, 60]. In the meantime, intensive investigation
has been conducted into software engineering practices involved in the development of DL/ML
systems [5, 17, 30, 67, 73, 86, 94, 96], as well as diverse technical aspects in DL/ML frameworks
and software systems, such as bugs [89, 101], faults [46], and program failures [99]. Nonetheless,
the OSS communities engaged in the development of DL frameworks have received less attention.
Meanwhile, considerable prior research has explored various aspects of OSS communities, including
proposing diverse operationalizations for classifying contributors [11, 26, 51, 52, 62, 66, 98], as
well as investigating various community factors that influence sustainability [34, 76, 104, 106], and
popularity of OSS projects [4, 9, 13, 31, 32]. However, little is known about the OSS communities
of DL frameworks, and how these communities have evolved during the development of DL
frameworks.With a better understanding of OSS communities behind DL frameworks, we could gain
insights into sustaining the governance of OSS communities and the popularity of DL frameworks.

To address this gap, we followed a mixed-methods approach to perform a comparative study on
the OSS communities of PyTorch and TensorFlow. Specifically, we investigated the structures of
the two communities with respect to various contributor roles, traced the evolution of community
structures and role transitions across project releases, and explored how community characteristics
influence project popularity. We compiled a dataset of 2,792 and 3,288 code commit authors, as well
as 9,826 and 19,750 participants involved in issue events on GitHub, from the two communities,
respectively, spanning over 5 years in history. With our dataset, we investigated the following
research questions:
RQ1. What are the structures of the two communities with respect to various contributor

roles?

Hierarchical structures manifest among the contributors in OSS communities, usually referred to
as the onion model, in which newcomers start as observers and move up the hierarchy to become
active users, peripheral developers, and ultimately core developers [26, 84, 106]. Understanding com-
munity structures of OSS communities provides insights into coordination mechanisms employed
by successful OSS projects [52], and functions of core development teams in OSS communities [106].

In RQ1, we investigated the structures of the two communities by classifying their contributors
into core, peripheral developers, and active users with multiple operationalization, analyzed the
technical backgrounds of contributors by examining their affiliations, education background and
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work experience, and inspected the contributions of common contributors across the two commu-
nities. In comparison to PyTorch, the TensorFlow community demonstrates a larger contingent
of contributors, comprising higher ratios of core developers and active users. Core developers
exhibit consistent involvement in both projects, unlike peripheral developers. Additionally, 64.4% of
developers in PyTorch and 56.1% in TensorFlow are employed by the leading companies behind
these projects, Meta and Google. Among core developers, 25.9% and 21.9% hold Ph.D. degrees,
while 77.2% and 77.7% contribute to other ML/DL open-source projects, respectively. Furthermore,
developers engaged in both communities demonstrate spatial and temporal similarities to some
extent in their pull requests across the respective projects.
RQ2. How do the two communities evolve across releases?

The evolution of OSS communities usually occurs spontaneously, characterized by the transition
of contributors across various roles over time [68]. Understanding how OSS communities evolve
is crucial in sustaining the continuous involvement of developers [107] and mitigating developer
turnover [33]. Previous studies reveal that the retention, dropout, and inflow of core developers
significantly influence the productivity and code quality of OSS projects [33, 48, 65].

In RQ2, we conducted a longitudinal analysis to investigate the evolution of the two communities
across releases, in terms of numbers of contributors with different roles and role transitions among
contributors. The evolution of the PyTorch community exhibits an upward trend in its contributors
across various roles, accompanied by fluctuations in the growth of active users and peripheral
developers. In contrast, the evolution of the TensorFlow community experiences an initial surge
followed by a decline in its growth of contributors. Major releases of the two projects coincide with
increased peripheral developers and active users in both communities. The PyTorch community
tends to attract more peripheral developers relative to core developers, while the TensorFlow
community tends to attract more active users relative to developers across releases. Over time,
both communities exhibit a statistically significant decrease in the inflow rates of core developers,
indicating potential challenges in engaging new contributors as projects progress. The higher
dropout and inflow rates in the Tensorflow community suggest a less stable core development
team for the TensorFlow project as compared to PyTorch. Major releases tend to hamper the
inflow of practitioners into the core development team in the TensorFlow community.
RQ3. How do community characteristics affect the popularity of DL frameworks?

Previous studies investigated various factors that affect the popularity of OSS projects, including
programming languages [9, 13], application domains [13], social media [32], and documentation up-
dates [4]. Nonetheless, the causal effects between community characteristics and project popularity
remain unexplored.

In RQ3, we applied a causal discovery method to explore the causal effects between community
characteristics and the popularity of the two frameworks. PyTorch has accumulated a smaller total
number of stars, which grows linearly at an average rate 2.2 times slower than TensorFlow. Two
major releases of TensorFlow tend to exert divergent impacts on the popularity of the project.
Project popularity has statistically significant and positive causal effects on the influx of new
developers into core development teams and attracting active users in the PyTorch community,
and on retaining core developers in the TensorFlow community. Conversely, the growth of
peripheral developers and retention of core developers demonstrate statistically significant and
positive causal effects on the popularity of PyTorch, while the expansion of active users exhibits
statistically significant and negative causal effects on the popularity of TensorFlow.

Based on our findings, we discuss implications and provide practical lessons for sustaining OSS
communities of DL frameworks and facilitating decision-making concerning the selection of DL
frameworks. We also highlight several research avenues, such as the integration of diverse data
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Figure 1. Overview of research methodology.

sources for developer classification in OSS communities and a systematic exploration into the
impact of major releases on OSS communities. This paper makes the following contributions:

• We perform a comparative study to characterize the OSS communities behind two represen-
tative deep learning frameworks, TensorFlow and PyTorch.

• We provide a dataset that includes 12,618 and 23,038 contributors, as well as 81,892 and 55,286
issues from the two communities for future investigations by others1.

• We evaluate the effectiveness of four operationalizations for core-peripheral developer classi-
fication in OSS communities, using the development data of deep learning frameworks.

• We provide a discussion of practical implications and outline future avenues of research.
The replication package is online at https://github.com/UniqueClouds/deep-learning-communities.

2 METHODOLOGY

We designed and carried out a mixed-methods empirical study, analyzing a dataset of the contribu-
tors in the two OSS communities of deep learning frameworks on GitHub, as depicted in Figure 1.
In RQ1, we investigated the structural composition of the two communities by classifying contribu-
tors into various roles, and further analyzed the developers who contribute to both communities,
which is crucial for understanding the characteristics of the contributors in these communities.
In RQ2, we explored the temporal evolution of the two communities by analyzing the number
of contributors and their role transitions over time, which provides insights into the growth and
turnover dynamics of these communities. In RQ3, we applied a causal discovery method to evaluate
the impact of community characteristics on the popularity of the two deep learning frameworks,
which is essential for understanding the influence of communities on the success and adoption of
these frameworks. Our research methodology is detailed in the following subsections.

2.1 Data Collection and Preprocessing

There are several well-known DL frameworks, such as PyTorch, TensorFlow, Keras, Google
JAX, and Deeplearning4j. PyTorch and TensorFlow are the two representative frameworks for
building and deploying DL models. Keras is a high-level API that runs on top of TensorFlow,
offering an easy-to-use interface for building and training DL models. Google JAX is geared more
towards research and experimentation for developing new algorithms and exploring different
DL approaches. Deeplearning4j is a commercial-grade DL library suitable for developing DL
applications on the JVM. Previous research in software engineering has focused on PyTorch and
TensorFlow, conducting comparative studies between the two frameworks [22, 27, 43], as well
as investigating various aspects of the two frameworks such as bugs [50, 57, 101], performance

1https://doi.org/10.5281/zenodo.10477123
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Table 1. Descriptive statistics of dataset.

PyTorch TensorFlow

Start Date August 13th, 2016 November 7th, 2015
End Release 1.12.0 2.9.0
# Commits 47,790 88,682
# Issues 81,892 55,286
# Issue Events 1,367,246 935,513
# Commit Authors 2,792 3,288
# Participants Involved in Issue Events 9,826 19,750

issues [19], API evolution [105], framework bindings [56], and supply chains and code clones [36,
64, 85]. Consequently, we chose PyTorch and TensorFlow as the subjects for our comparable
case study on the OSS communities of deep learning frameworks.
We collected historical contributor data of the PyTorch and TensorFlow communities on

GitHub until August 1st, 2022. For each community, we first collected the commits of the master
branch of its code repository through GitHub REST API. Note that we excluded merge commits as
code changes in merge commits are already reflected in the parent branches that we considered.
Next, we collected the account information (i.e., GitHub login) of GitHub users who have authored
commits as indicated by the commits, to enable further analysis of the development activities of
commit authors on GitHub. We further collected issues (including pull requests) and the relevant
issue events from the issue repository, and extracted the account information of the participants
who opened issues or were involved in issue events. In addition, we excluded bot accounts by using
BoDeGHa [40] for automatic detection and a follow-up validation of the detection results.

We notice that 7,355 out of 47,790 commits (15.4%) and 10,307 out of 88,682 (11.6%) do not include
GitHub login in their authors for the PyTorch and TensorFlow projects, respectively. Thus, we
followed three steps to identify GitHub login of the authors of these commits: (1) We first identified
the aliases of commit authors by aggregating similar (name, email) tuples as inspired by previous
studies [39, 53, 93], considering that the same person may use different aliases when committing
code. (2) For each commit author we identified, we manually checked the commits they authored
on GitHub pages, to identify their GitHub accounts. (3) For the rest of the commit authors whom
we cannot identify their GitHub accounts, we searched their names and emails online to determine
the possible GitHub accounts, and further validated the accounts by inspecting account activities.
In this way, we identified the GitHub accounts of 234 and 188 additional commit authors for the
PyTorch and TensorFlow projects, respectively.

As a result, we compiled a dataset with 2,792 and 3,288 commit authors, among whom 2,472 and
3,183 have GitHub accounts, as well as 9,826 and 19,750 GitHub users who have been involved in
GitHub issue events, for PyTorch and TensorFlow, respectively, as shown in Table 1.

2.2 Role Classification

Based on our dataset, we classified the contributors of each community into three roles, i.e., core
developers, peripheral developers, and active users. We considered a contributor who has previously
made contributions to the master branch of the code repository as a developer (core or peripheral),
and one who has been involved in issue events (e.g., opening issues, merging pull requests, and
adding comments) but never made code contributions to the master branch as an active user. We
further applied an automatic approach that implements four operationalizations to classify the
developers into core and peripheral developers with respect to their contributions – developers
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who have accomplished 80% of the contributions in a project are core developers, and the rest
are peripheral developers – which aligns with the standard 80th percentile threshold in the core-
peripheral classification [26]. The four operationalizations include three variations of count-based
operationalizations and an operationalization from the network perspective, as proposed in previous
work [51], to characterize the contributions of a contributor:

• Commit count: the number of commits that a contributor has authored and eventually has
been merged to a repository in a certain time period. Core developers typically contribute
to a code repository more frequently; their commit counts tend to be higher than those of
peripheral developers.

• Lines of code (LOC) count: the number of added and deleted lines of code a contributor has
authored and eventually has been merged to a repository in a certain time period. Since core
developers are responsible for the majority of code changes, they are supposed to achieve a
higher LOC count than peripheral developers.

• Issue count: the number of issues a contributor in a project on GitHub in a certain time
period. Core developers usually have a higher level of technical skill as well as a better
understanding of the open-source project than peripheral developers. Thus, they tend to
be more intensively involved in discussions of issues and pull requests in a project than
peripheral developers.

• Degree centrality of issue network: An issue network is a relational abstraction that
represents the communication of contributors in the issue repository of a project on GitHub.
In the issue network for a given project, the nodes represent contributors and the edges
represent the communication relationship between contributors. To construct an issue net-
work, we applied a variation of the standard approach for mailing lists [8], where edges are
added between individuals who contribute to the discussion of a common issue as well as the
issuer, within the same time period. Degree centrality aims at measuring local importance,
representing the number of connections (edges) a contributor has to other contributors [18].
As important members of the leadership and coordination structure, core developers have
connections with other core members and with peripheral developers to provide technical
guidance, thus having a greater degree of centrality.

2.3 Characterizing Technical Background of Developers

To characterize the technical background of developers, we first analyzed the affiliations of the
developers who contribute to the two communities. Specifically, we determined the affiliations of
the developers based on the domains of their email addresses, following the approach of previous
studies [102, 104] that involves the steps below:

• Email Domain Extraction and Filtering. We initially extracted 678 domains from the
email addresses of 5,043 developers in the two communities. We then excluded domains such
as gmail.com and users.noreply.github.com by referring to a list of free email providers [69].
As a result, we identified 608 domains representing non-free email providers.

• Email Domain and Affiliation Matching. We used two open-source lists [6, 45] that
include email domains for organizations, companies, and universities. Based on the lists,
we matched 283 organizations, companies, and universities with the identified 608 email
domains.

Furthermore, we conducted a manual examination of the educational and work experience of a
random sample of 154 and 261 core developers in the PyTorch and TensorFlow communities, with
a 95% confidence level and a 5% margin of error. For each developer in the samples, we searched
their GitHub and LinkedIn profiles, as well as their personal blogs. Wherever accessible, we
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inspected these sources to gather information on the educational background (e.g., degree and
major), work experience (e.g., employers and job responsibilities), and open-source contributions
(e.g., activities on GitHub) of the sampled developers.

2.4 Longitudinal Analysis of Community Characteristics

To understand the evolution of characteristics of OSS communities, we initially considered major
andminor releases of each project to segment our continuous dataset into distinct time windows like
Jergensen et al. did [49]. PyTorch and TensorFlow both follow a semantic versioning convention
to number the releases. In such repositories, versions are identified by three integers, in the
format x.y.z: increments in x denote major releases, which can be incompatible with old versions;
increments in y denote minor releases, which add functionality in a backward-compatible manner;
and increments in z denote patches implementing bug fixes. The temporal segmentation approach
resulted in some of the initial timewindows spanning fewer than threemonths. Previous studies [51]
indicated that role transitions may not occur within a short period of time. Thus, we further applied
a three-month restriction on the duration of the time windows, as did Joblin et al. [51]. Specifically,
if an initial time window spans less than three months, we merged it with its following time window.
For instance, TensorFlow 0.11.0 was released on November 12th, 2016, while TensorFlow 0.12.0
was released on December 20th, 2016; the time interval between these two releases is less than
three months, thus we merged the time windows of release 0.11.0 and 0.12.0 for TensorFlow.
In this way, we obtained 14 and 20 time windows from the 14 and 20 releases of PyTorch and
TensorFlow, respectively.

Next, we estimated the numbers of core and peripheral developers as well as active users of each
community on a time window basis, and evaluated the evolution of the community structures with
respect to various roles across releases with two measures:

𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 =
# 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠

# 𝑐𝑜𝑟𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠
(1)

𝑅𝑎𝑡𝑖𝑜𝑎𝑢/𝑑 =
# 𝑎𝑐𝑡𝑖𝑣𝑒 𝑢𝑠𝑒𝑟𝑠
# 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠

(2)

We also captured role transitions with respect to core developers in each community on a time
window basis: (1) Retention: A core developer retained their core role in the current time window.
(2) Dropout: A core developer has made no commits since the current time window. (3) Core to
peripheral (𝑐𝑜𝑟𝑒2𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 ): In cases where a core developer had previously contributed but no
longer held the core role within the current time window, we characterized this as a role transition
from core to peripheral. (4) Inflow: If a developer assumed a core role within the current time
window without having held the core role before, we denoted this as an inflow of a core developer.
Specifically, we evaluated the evolution of role transition rates with respect to core developers in
each community across releases.

In addition, we used the Mann-Kendall test [42] in the pyMannKendall [47] Python package to
determine whether the trends observed in the longitudinal analysis are increasing or decreasing
over time to a statistically significant degree.

2.5 Causal Discovery between Community Characteristics and Project Popularity

We used a causal discovery method to test whether observational time series data support the
hypothesis that the community characteristics causally affected the project popularity of PyTorch
(September 2017 - July 2022) and TensorFlow (March 2016 - July 2022). Causal discovery [77], or
causal structure learning, qualitatively reconstructs the links in either a complete causal graph
or just the causes of a particular target variable. Specifically, we used the PCMCI method [78] in
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the Tigramite Python package2, which can reliably estimate causal graphs including time lags
from time series data. The PCMCI method estimates a “time series graph” (causal graphs including
time lags) with nodes representing variables at different time lags and links representing causal
relations. If the time lag is denoted by 𝜏 , a causal link is notated 𝑋𝑡−𝜏 → 𝑌𝑡 , which exists if 𝑋𝑡−𝜏 is
not conditionally independent of 𝑌𝑡 given the past of all variables. In the time series graph, the
parents P(𝑋 ) of a variable 𝑋 are defined as the set of all nodes with links towards 𝑋 .
PCMCI follows a two-stage procedure: (1) Condition selection via 𝑃𝐶1 algorithm: For each

variable𝑋 , estimate a superset P̃ (𝑋𝑡 ) of its parents P(𝑋𝑡 ) with 𝑃𝐶1 algorithm, which is an iterative
Markov discovery algorithm [82]. The condition selection stage aims to avoid conditioning on
irrelevant variables. (2) Momentary conditional independence (MCI) test: use these parents as
conditions, and test all variable pairs 𝑋𝑡−𝜏 and 𝑌𝑡 with time lags 𝜏 ∈ 0, ..., 𝜏𝑚𝑎𝑥 to establish a link
𝑋𝑡−𝜏 → 𝑌𝑡 . If 𝜏 = 0, conditional independence is estimated for contemporaneous variables.

Both stages consist of conditional independence tests, which can be implemented with different
test statistics. We used the linear partial correlation test ParCorr implemented in Tigramite for
conditional independent tests given ParCorr have a higher detection power of causal relations
than other test statistics [78]. We chose to let Tigramite determine the significance level 𝛼𝑃𝐶 for
conditional independence tests in the condition selection stage based on the Akaike information
criterion. In the MCI stage, we set the maximum time lag (𝜏𝑚𝑎𝑥 ) to be 12, which is 1 year. The
resulting 𝑝 values and correlation coefficients of conditional independence tests of MCI indicate
the significance and strength of causal links in time series graphs.

To compile time series datasets in causal discovery, we considered a time window of one month
for both communities. For each time window, we computed the variables that capture commu-
nity characteristics, and collected the number of stars as a proxy of project popularity, which is
widely used in previous studies (e.g., [12–14]). The resulting time series datasets contain 71 and 80
observations for PyTorch and TensorFlow, respectively.

3 RESULTS

We now present the results of applying our research methodology to our dataset. We succinctly
answer each of our research questions.

3.1 Structures of Communities (RQ1)

In RQ1, we investigate the structures of the PyTorch and TensorFlow communities with respect
to their contributors with different roles, as well as compare the contributions of the common
developers across the two communities.

3.1.1 Roles of Contributors in Communities. Table 4 presents the contributor roles we have identi-
fied in the two DL communities, including core developers, peripheral developers, and active users.
The Commit Count, LOC Count, Issue Count and Issue Network rows present the results of four
operationalizations we considered for the classification of core-peripheral developers, respectively.
The Aggregate row presents the results after we merged the resulting sets of core developers from
the four operationalizations.

The PyTorch community has 2,792 developers, who have previously committed to the master
branch, and 9,826 active users, who have been involved in issue events but never made code
contributions. The number of active users is 3.5x greater than that of developers. Among the 2,792
developers in the PyTorch community, the percentage of core developers ranges from 3.8% to
7.3% based on the four operationalizations. Meanwhile, the TensorFlow community has 3,288
developers and 19,750 active users. The number of active users is up to 6.0x the number of developers.
2https://github.com/jakobrunge/tigramite
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Table 2. Companies with top 5 most developers in deep learning communities.

(a) PyTorch

Company # Developers Percentage

Meta 595 64.4%
Intel 40 4.3%
Microsoft 31 3.4%
NVIDIA 21 2.3%
AMD 13 1.4%

(b) TensorFlow

Company # Developers Percentage

Google 608 56.1%
Intel 64 5.9%
NVIDIA 38 3.5%
IBM 34 3.1%
Arm 31 2.9%

Table 3. Technical background of core developers in deep learning communities.

% Core Developers in PyTorch % Core Developers in TensorFlow

Ph.D. Holder 25.9% 21.9%
Employee in the Leading Company 50.0% 23.4%
Full-Time Job as Contributor 44.9% 19.3%
Contributor of other ML/DL OSS project(s) 77.2% 77.7%

The percentage of core developers in the TensorFlow community ranges from 4.0% to 19.1% based
on the four operationalizations.

We further compared the number of contributors with various roles between the two communities.
The numbers of developers and active users in the TensorFlow community are 1.18x and 2.01x of
those in the PyTorch community, indicating that the TensorFlow community involved a larger
population of contributors compared to the PyTorch community, especially in terms of active users.
The TensorFlow community has a larger ratio of active users relative to developers compared to
the PyTorch community (6.0x vs. 3.5x). Core developers account for 9.1% of the developers in the
PyTorch community, which is lower than the percentage of the TensorFlow community (24.5%).

� Finding 1. The TensorFlow community exhibits a larger population of contributors,
with a higher proportion of core developers in its development team and a more extensive
cohort of active users relative to developers, as compared to the PyTorch community.

3.1.2 Technical Background of Developers in Communities. The contributors in the PyTorch and
TensorFlow communities are affiliated with 144 and 190 organizations, companies, and universities,
respectively, with 51 overlapped affiliations. Table 2(a) and (b) present the top 5 affiliations with
the most developers in the PyTorch and TensorFlow communities, respectively. We observed
that the employees in Meta and Google account for over half of the developers in the PyTorch and
TensorFlow communities. Note that Meta and Google are the primary sponsors of the two deep
learning frameworks. Additionally, the employees of leading hardware companies like Intel and
NVIDIA show enthusiasm in contributing to the development of the two deep learning frameworks.

In addition, Figure 2(a) and (b) present the distributions of 78 and 75 developers who are affiliated
with 58 and 54 universities in the PyTorch and TensorFlow communities, respectively. Among the
affiliated universities, the universities with the top 3 most developers are Cornell (7), UC Berkeley
(4), and CMU (3) for the PyTorch community, and MIT (5), Seoul National University (5), and
UC Berkeley (3) for TensorFlow. Meanwhile, 59% and 56% affiliated universities have only one
developer in the PyTorch and TensorFlow communities. The contributions from the developers
affiliated with universities suggest the potential collaboration between academia and industry in
the DL communities.
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Case Western Reserve University

2.6%(2)

Duke University

2.6%(2)
Harvard University

2.6%(2)Georgia Institute of Technology
2.6%(2)New York University

2.6%(2)Technische Universität München
2.6%(2)

Seoul National University 2.6%(2)

Peking University 2.6%(2)

Virginia Tech 2.6%(2)

Carnegie Mellon University
3.8%(3)

University of California, Berkeley
5.1%(4)

Cornell University

9.0%(7)

Others59.0%(46)

(a) PyTorch

Cornell University

2.7%(2)
EPFL - EPF Lausanne

2.7%(2)
ETHZ - ETH Zurich

2.7%(2)Indian Institute of Technology, Hyderabad
2.7%(2)KTH Royal Institute of Technology

2.7%(2)The University of Texas at Austin
2.7%(2)

Shanghai Jiaotong University 2.7%(2)

Rutgers University 2.7%(2)

Peking University 4.0%(3)

University of California, Berkeley
4.0%(3)

Seoul National University

6.7%(5)

Massachusetts Institute of Technology

8.0%(6)

Others56.0%(42)

(b) TensorFlow

Figure 2. Developers affiliated with universities in deep learning communities.

Table 3 presents the technical background of the core developers in the two communities. We
observed that over one-fifth of the core developers in the two communities hold Ph.D. degrees,
majoring in computer science, mathematics, informatics, and physics. The employees in the leading
company account for a larger amount of core developers in PyTorch as compared to TensorFlow
(25.9% for META vs. 21.9% for Google). 44.9% and 19.3% of the core developers in PyTorch and
TensorFlow contribute to the development of the two DL frameworks as a full-time job. In addition,
77.2% of the core developers in PyTorch have contributed to other ML/DL OSS projects, such as
triton [2], Fuser [25], and pyro [7]. Meanwhile, 77.7% of the core developers in TensorFlow have
contributed to other ML/DL OSS projects, such as xla [70], iree [87], and profiler [88].

� Finding 2. In the PyTorch and TensorFlow communities, 64.4% and 56.1% of developers
are employed by their leading companies, Meta and Google, respectively. 25.9% of the
core developers in PyTorch and 21.9% in TensorFlow hold a Ph.D. degree. Furthermore,
77.2% of the core developers in PyTorch and 77.7% in TensorFlow have contributed to
other ML/DL OSS projects.

3.1.3 Contributors in Common across Communities. We further investigated the software practi-
tioners who contribute to both the PyTorch and TensorFlow communities. We observed that 233
developers and 1,164 active users made contributions to both communities. As shown in Table 5,
among the 233 common developers across the two communities, 12 developers take core roles
in both communities, while 97 developers (77 + 20) take core roles in either community. In total,
109 out of the 233 common developers take the core roles in the two communities, accounting for
46.8% of the common developers. The percentage is higher than that of either community, 9.1% for
PyTorch and 24.5% for TensorFlow. The higher percentage of core developers among common
developers indicates that core developers are more likely to contribute to multiple deep-learning
projects, compared to peripheral developers.

� Finding 3. Core developers demonstrate a higher propensity to contribute across the
two projects, as opposed to peripheral developers.

Among the common developers across the two communities, we identified three groups of
developers: (i) core developers in both communities (12), (ii) core developers in either community
(97), and (iii) peripheral developers in both communities (124). We further investigated the spatial
and temporal characteristics of the contributions across the two communities made by the three
groups of developers.
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Table 4. Contributors with various roles in deep learning communities identified by classification operational-

izations.

(a) PyTorch

# Core Developers # Peripheral Developers

Commit Count 191 (6.8%) 2,601 (93.2%)
LOC Count 110 (3.9%) 2,682 (96.1%)
Issue Count 205 (7.3%) 2,587 (92.7%)
Issue Network 107 (3.8%) 2,685 (96.2%)
Aggregate 254 (9.1%) 2,538 (90.9%)

(b) TensorFlow

# Core Developers # Peripheral Developers

Commit Count 260 (7.9%) 3,028 (92.1%)
LOC Count 130 (4.0%) 3,158 (96.0%)
Issue Count 628 (19.1%) 2,660 (80.1%)
Issue Network 178 (5.4%) 3,110 (94.6%)
Aggregate 805 (24.5%) 2,483 (75.5%)

Table 5. Developers in common across PyTorch and TensorFlow communities.

TensorFlow
Core Developers Peripheral Developers None

PyTorch
Core Developers 12 20 222
Peripheral Developers 77 124 2,337
None 716 2,339 /

In terms of spatial characteristics, we inspected the titles and discussions of pull requests to
understand the contributions developers made. As for temporal characteristics, we compared the
time periods during which developers submitted pull requests to a code repository.

Among the 12 core developers in both communities, eight developers (66.7%) tend to contribute
more code in the PyTorch community as compared to TensorFlow. Four developers (33.3%) reveal
similarities in terms of spatial characteristics of pull requests across the two communities. For
instance, a core developer has fixed bugs related to JIT compilers in both projects (see Figure 9(a)
and (b) in Appendix); a core developer has updated the QNNPACK submodule in PyTorch, and
fixed a crash when using the XNNPACK library of TensorFlow, which is based on the QNNPACK
library in PyTorch (see Figure 9(c) and (d) in Appendix). In addition, 4 of 12 of the developers
have simultaneously submitted pull requests to both projects, indicating temporal similarity in pull
requests of common core developers to some extent.

Some of the 97 core developers in either community exhibit temporal and spatial similarity to a
certain extent in their contributions across the two communities. 32 out of 97 (33%) demonstrate
similarity in the spatial characteristics of their pull requests across the two communities. Take a
developer for example, who takes the core role in TensorFlow and the peripheral role in PyTorch,
he/she has submitted pull requests relevant to oneDNN for AArch64 in both projects (see Figure 10 in
Appendix). On the other hand, 33 out of 97 (34%) have submitted pull requests to both projects during
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overlapped periods, demonstrating similarity in the temporal characteristics of their contributions
across the two communities.
Some of the 124 peripheral developers in both communities demonstrate temporal and spatial

similarity in their contributions, particularly in terms of documentation. 16.9% (21 out of 124)
of the peripheral developers have submitted pull requests to both projects during overlapping
periods, indicating a certain degree of temporal similarity in their contributions. In terms of spatial
similarity, 12.1% (15 out of 124) have submitted pull requests regarding documentation, including
‘format’, ‘typo fix’, and ‘docstring’.

� Finding 4. Developers contributing to both communities exhibit a certain level of spatial
and temporal resemblance in their pull requests across the respective projects.

3.2 Evolution of Communities (RQ2)

In RQ2, we investigate the evolution of two communities over time in terms of numbers of contrib-
utors with various roles, role ratios, and role transitions.

3.2.1 Evolution of Contributors with Various Roles. Figure 3 presents the numbers of core developers,
peripheral developers, and active users of the PyTorch and TensorFlow communities across
releases.

As depicted in Figure 3(a), the numbers of contributors associated with each of the three roles in
the PyTorch community demonstrate an upward trend over time, accompanied by fluctuations
in the growth of active users and peripheral developers. In particular, the number of active users
has nearly doubled from release 0.4.0 to 1.0.0, followed by a substantial decrease until version
1.3.0. Subsequently, the number of active users has experienced a gradual increase, characterized
by a relatively steady trend. Meanwhile, the growth of peripheral developers follows a similar
pattern to active users, experiencing a peak at release 1.0.0 and declining numbers until version
1.3.0. Subsequent releases, particularly from 1.9.0 to 1.12.0, have experienced a discernible upward
trend. In contrast, the number of core developers exhibits a consistent rise, initiating from release
0.2.0 and stabilizing after the release of version 1.7.0.

As shown in Figure 3(b), the evolution of the contributors with various roles in the TensorFlow
community exhibits a distinct turning point, initially demonstrating an ascending trend followed
by a subsequent decline. Specifically, the number of active users has experienced a steady increase
from release 0.6.0 to 1.12.0, nearly doubling by release 1.14.0. Subsequently, after release 1.14.0, a
notable decline in active users ensued until reaching its lowest point at release 2.8.0. The evolution
of core and peripheral developers resembles that of active users, albeit with a more subdued level of
fluctuation. The turning point in the evolution of contributors may be attributed to the substantial
transition of TensorFlow from its 1.x.x releases to the major release of 2.0.0.

Comparatively, notable peaks in the numbers of peripheral developers and active users occurred
in both communities around major releases, at the major release 1.0.0 of PyTorch and around the
major release 2.0.0 of TensorFlow. Moreover, a stable trend in the number of core developers
persisted in both communities, stabilizing around 100 after PyTorch release 1.7.0 and approximately
130 after TensorFlow release 2.6.0.
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Figure 3. Numbers of contributors with various roles in deep learning communities across releases.

� Finding 5. The evolution of contributors with various roles in the PyTorch community
exhibits a rising trend over time, accompanied by fluctuations in the growth of active
users and peripheral developers. The evolution of contributors with various roles in
the TensorFlow community indicates a noticeable shift, starting with an upward trend
followed by a subsequent decline. Substantial increases in peripheral developers and
active users coincided with major releases in both communities, while a stable trend
persisted in the numbers of core developers across both.

3.2.2 Role Ratios across Releases. Figure 4 presents the evolution of role ratios of the PyTorch and
TensorFlow communities across releases. As shown in Figure 4 (a), 𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 and 𝑅𝑎𝑡𝑖𝑜𝑎𝑢/𝑑 in the
PyTorch community exhibit fluctuations prior to the major release 1.0.0, subsequently converging
between 2.0 and 3.0 after release 1.5.0, implying a balanced contributor growth across roles in the
PyTorch community. Specifically, 𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 peaked at 5.8 during release 1.0.0, indicating a 5.8-fold
difference between peripheral and core developers, followed by a sharp decline until release 1.4.0.
In addition, the Mann-Kendall trend test indicates a statistically significant decreasing trend in
𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 (p-values = 0.023). As shown in Figure 4(b), 𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 and 𝑅𝑎𝑡𝑖𝑜𝑎𝑢/𝑑 in the TensorFlow
community exhibit a significant declining trend, particularly after release 1.14.0, as supported by
the Mann-Kendall trend test (p-values = 0.042 and 0.021). Specifically, both ratios reach their peaks
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at release 1.14.0, with subsequent downward trends in 𝑅𝑎𝑡𝑖𝑜𝑎𝑢/𝑑 , while 𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 demonstrates
fluctuations between 1 and 2, implying that the number of peripheral developers ranges from 1 to
2 times the number of core developers.

Comparatively, the PyTorch community demonstrates a higher ratio of peripheral to core devel-
opers (𝑅𝑎𝑡𝑖𝑜𝑝𝑑/𝑐𝑑 ), while TensorFlow has a higher ratio of active users to developers (𝑅𝑎𝑡𝑖𝑜𝑎𝑢/𝑑 ),
which indicates a relatively larger proportion of peripheral developers and a smaller proportion of
active users in the PyTorch community over time as compared to TensorFlow.
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Figure 4. Role ratios in deep learning communities across releases.

� Finding 6. The PyTorch community tends to attract relatively more peripheral develop-
ers than core developers as compared to TensorFlow. In the meantime, the TensorFlow
community tends to attract relatively more active users than developers across releases
as compared to PyTorch.

3.2.3 Role Transitions across Releases. Figure 5 presents the evolution of role transitions across
releases for core developers in the PyTorch and TensorFlow communities.
As shown in Figure 5(a), the role transition rates in the PyTorch community tend to fluctuate

within a narrow range after the major release 1.0.0. In particular, the Mann-Kendall test indicates
a statistically significant decreasing trend in the inflow rate of core developers (p-values=0.023).
In the meantime, the retention rate of core developers ranges between 0.6 and 0.8 after the major
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Figure 5. Role transitions of core developers in deep learning communities across releases.

release 1.0.0. The decreasing trend of inflow rates and the stabilization of retention rates suggest
growing stability within the core development team of the PyTorch project over time.
As shown in Figure 5(b), various role transition rates in the TensorFlow community exhibit

distinct upward or downward trends from the initial release, as evidenced by the Mann-Kendall test.
Specifically, the retention and core2peripheral rates demonstrate statistically significant increasing
trends (p-values = 0.036 and 2.7 × 10−5), while the dropout and inflow rates show statistically
decreasing trends (p-values = 0.001 and 3.9 × 10−6). Such statistically significant trends suggest
that the TensorFlow community tends to attract fewer newcomers and experience less turnover
within its core development team over time. Additionally, sharp declines in the inflow rate are
observed at major releases 1.0.0 and 2.0.0, indicating a negative impact from major releases on the
influx of developers into the core development team.

In comparison, we observe statistically significant decreasing trends in inflow rates across both
communities over time, indicating potentially increasing challenges in engaging new contributors
in the core development team as projects evolve. In the meantime, the average core2peripheral rates
across releases remain comparable between the two communities (0.191 for PyTorch versus 0.158
for TensorFlow). The TensorFlow community demonstrates higher dropout and inflow rates on
average, approximately 2.1x and 1.3x respectively those of the PyTorch community, indicating
a comparatively less stable core development team in the TensorFlow project. In particular, the
TensorFlow community demonstrates substantially higher inflow rates during its initial releases
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as compared to PyTorch, implying an earlier engagement of practitioners in the TensorFlow
community.

� Finding 7. Over time, a statistically significant decreasing trend is evident in the inflow
rates of core developers across both communities, indicating potential challenges in
engaging new contributors as projects progress. The higher dropout and inflow rates
over time in the Tensorflow community suggest a less stable core development team
for the TensorFlow project as compared to PyTorch. Major releases tend to negatively
influence the inflow of developers into the core development team in the TensorFlow
community.

3.3 Community Characteristics vs. Project Popularity (RQ3)

In RQ3, we explore how the popularity of projects evolves across releases, and investigate how
community characteristics affect project popularity over time.

3.3.1 Evolution of Project Popularity. Figure 6 illustrates the evolution of project popularity, denoted
by the number of stars over time, throughout the releases of both the PyTorch and TensorFlow
projects. The PyTorch project has received a smaller number of stars in total as compared to
TensorFlow (56.6k vs. 163.7k). Moreover, the number of stars for PyTorch grows 2.4 times slower
than that for TensorFlow (0.8k vs. 1.9k), and exhibits distinct growth patterns. Specifically, the
number of stars grows linearly in the PyTorch project with a growth rate of around 0.8k stars per
month (𝑅2 = 0.995). Conversely, the number of stars in the TensorFlow project has experienced
two turning points in growth rates: (1) an acceleration point in growth rate between release 0.11.0
and 1.0.0, and (2) a deceleration point in growth rate between release 1.14.0 and 2.0.0. The two
turning points tend to align with the two major releases of TensorFlow, release 1.0.0 and 2.0.0,
which exert divergent effects on the project popularity of TensorFlow.

� Finding 8. PyTorch has accrued a smaller total number of stars over time, which grows
linearly at an average rate 2.2 times slower than TensorFlow. The major releases 1.0.0
and 2.0.0 of TensorFlow tend to exert divergent impacts on the popularity of the project.

3.3.2 Causal Relations between Community Characteristics and Project Popularity. Figure 7 presents
the time series graphs demonstrating causal relationships between community characteristics

2016
Mar 1

2017
Jan 1

2018
Jan 1

2019
Jan 1

2020
Jan 1

2021
Jan 1

2022
Jan 1

0

20000

40000

60000

80000

100000

120000

140000

160000

St
ar

s

0.11.0
1.0.0

1.14.0
2.0.0

PyTorch
TensorFlow

Figure 6. Popularity growth of deep learning projects across releases.
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Table 6. Definition of variables in time series graphs.

Variable Definition

𝑆 Number of accumulated stars received by the project until month 𝑡 .

𝐶 Number of core developers in the community at month 𝑡 .
𝑃 Number of peripheral developers in the community at month 𝑡 .
𝐴𝑈 Number of active users in the community at month 𝑡 .

𝑅 Retention rate of core developers in the community at month 𝑡 .
𝐼 Inflow rate of core developers in the community at month 𝑡 .
𝐷 Dropout rate of core developers in the community at month 𝑡 .
𝐶2𝑃 Core to peripheral developers rate in the community at month 𝑡 .

and project popularity along the time for both PyTorch (cf. Figure 7(a)) and TensorFlow (cf.
Figure 7(b)), employing eight variables as illustrated in Table 6.
PyTorch. Initially, we investigate the causal links that connect with the node 𝑆 , which represents
project popularity. 𝑆 is detected as the common cause of 𝐴𝑈 and 𝐼 with positive effect sizes of 0.449
and 0.424, respectively, at time lags of 5 and 9 months. The positive causal links suggest that the
upsurge in project popularity of month 𝑡 leads to the increase in active users of month 𝑡 + 5 and in
the inflow rate of month 𝑡 + 9. Meanwhile, 𝑆 is identified as the cause of 𝐷 with a negative effect
size of -0.459 at a time lag of 10 months, indicating that a surge in project popularity of month 𝑡

leads to a decline in the dropout rate for core developers of month 𝑡 + 10. In addition, both 𝑃 and 𝑅
exhibit positive causal effects on 𝑆 , with effect sizes of 0.425, 0.437 (and 0.432) at time lags of 3, 6
(and 12) months, respectively. The positive causal links indicate that an increase in the number of
peripheral developers of month 𝑡 results in an increase in project popularity of month 𝑡 + 3, while a
heightened retention rate of core developers of month 𝑡 leads to increased project popularity of
month 𝑡 + 6 and 𝑡 + 12.

Subsequently, we examine the causal relationships among the variables representing community
characteristics. The contemporaneous causal link between 𝐶2𝑃 (core2peripheral rate) and 𝑅 (re-
tention rate) suggests a negative coupling, with an effect size of 0.587. Moreover, the time-lagged
causal loop between 𝐴𝑈 and 𝐼 indicates the mutual positive causal effects between active users and
the inflow rate with time lags. Additionally, the time-lagged causal chain 𝑅 → 𝐷 → 𝑃 implies that
an increase in the retention rate (𝑅) results in a reduction in the number of peripheral developers
(𝑃 ) in the long run, owing to a rise in the dropout rate (𝐷).
TensorFlow. We first look at the causal links associated with the node 𝑆 , which denotes project
popularity. 𝑆 is detected as the cause of 𝑅 with a positive effect size of 0.385 at a time lag of 2
months, indicating that the elevation in project popularity of month 𝑡 leads to an increase in the
retention rate of core developers of month 𝑡 + 2.
We then turn to the causal links among the nodes representing the variables of community

characteristics. 𝐶 , 𝑅, 𝐼 , and 𝐶2𝑃 are fully coupled as suggested by the contemporaneous causal
links. The contemporaneous causal link between 𝑃 and 𝐴𝑈 suggests that the number of peripheral
developers is positively coupled with the number of active users in the same month, with an effect
size of 0.397. Moreover, the time-lagged causal chain 𝐶,𝐶2𝑃 → 𝑃 → 𝑅 indicates that the increase
in the number of core developers (𝐶) and the decrease in the core-to-peripheral rate (𝐶2𝑃 ) lead to
increased retention rates in the long run, attributed to the expansion of peripheral developers.
PyTorch vs. TensorFlow. Comparatively, we observe two consistent causal links evident in the
time series graphs of both PyTorch and TensorFlow. One is the negative contemporaneous causal
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Figure 7. Resulting time series graphs of community characteristics and project popularity for PyTorch and

TensorFlow. Dashed and solid lines represent negative and positive causal links, respectively. The numbers

on the edges, such as 0.42(9), indicate the strength of the relationship (0.42) and the time lag for causal links in

months (9). Node colors depict the auto-dependency strength, and edge colors the cross-dependency strength

at the lags with the maximum absolute MCI value. Nodes are labeled with the following abbreviations: S:

number of accumulated stars; C: number of core developers; P: number of peripheral developers; AU: number

of active users; R: retention rate of core developers; I: inflow rate of core developers; D: dropout rate of core

developers; C2P: ratio of core to peripheral developers.
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link between 𝑅 and𝐶2𝑃 , suggesting that retention and core2peripheral rates are negatively coupled
in the same month. The other is the positive time-lagged causal link from 𝐼 to 𝐴𝑈 , indicating that
the influx of developers into the core development teams results in a subsequent increase of active
users in the long run.

� Finding 9. Project popularity has statistically significant and positive causal effects on the
influx of new developers into core development teams and attracting active users in the
PyTorch community, and on retaining core developers in the TensorFlow community.
From the opposite perspective, the expansion of peripheral developers and the retention
of core developers demonstrate statistically significant and positive causal effects on
the popularity of PyTorch, while the expansion of active users exhibits statistically
significant and negative causal effect on the popularity of TensorFlow.

4 DISCUSSION

We reflect on our findings of research questions and discuss implications for tool builders, re-
searchers, and practitioners. We also highlight the avenues for future research.

4.1 Hypotheses

The count- and network-based operationalizations for classifying core and peripheral developers we
used claim to be valid measures. If this is a matter of fact, we expect to reach consistent conclusions
about whether a given developer is core or peripheral. Due to finite random sampling and sources
of noise, we expect imperfect agreement between any two operationalizations even if they are
consistent in capturing the same abstract concept. Nevertheless, if any two operationalizations
give inconsistent results, the level of the agreement should be significantly greater than in the case
of random assignment of contributor roles. Our null model for zero agreement is the amount of
agreement that results from any two operationalizations that assign classes according to a Bernoulli
process.

We use the Cohen’s Kappa measure [24] to examine the agreement between two operationaliza-
tions for role classification, as a previous study did [51]:

𝜅 = (𝑝𝑜 − 𝑝𝑒 ) /(1 − 𝑝𝑒 )
where 𝑝𝑜 is the number of times the two operationalizations agree on the role of a developer,
divided by the total number of developers, and where 𝑝𝑒 is the expected probability of agreement
when there is a random assignment of roles to developers. The interpretation of Kappa values is
shown in Table 7.

Table 7. Interpretation of Kappa values.

Kappa value Interpretation

<= 0 Poor agreement
[0.01, 0.20] Slight agreement
[0.21, 0.40] Fair agreement
[0.41, 0.60] Moderate agreement
[0.61, 0.80] Substantial agreement
[0.81, 1.00] Almost perfect or perfect agreement

Figure 8 presents the resulting agreements between four operationalizations used to identify
core and peripheral developers. For the operationalizations based on the version-control systems,
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i.e., commit count and LOC count, we see substantial agreement (0.65 and 0.61) across the two
communities.
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Figure 8. Pairwise agreement of operationalizations for developer classification in deep learning communities.

In the PyTorch community, all comparisons show an agreement greater than “moderate” (i.e.,
with Kappa values greater than 0.4), which significantly exceeds the level of agreement expected by
chance. The agreement level indicates that the four operationalizations do not lead to contradicted
role classifications in the PyTorch community. On the contrary, in the TensorFlow community,
the results of role classification based on issue count demonstrate merely slight to fair agreement
with those based on commit count, LOC count, and issue network, with Kappa values ranging from
0.08 to 0.24. We further investigated the contributors who have frequently opened issues in the
TensorFlow community. We observed a minimal overlap between those who raised issues and
those who actively contributed code or participated in issue events, which indicates the potential
existence of communication channels other than GitHub for issue tracking in the TensorFlow
project (e.g., the official forum3 for Tensorflow).

The inconsistency observed in the results implies that relying solely on a single operationalization
might occasionally be insufficient for effective developer classification owing to incomplete data.
Therefore, future work could explore approaches and techniques that systematically integrate
various data sources, such as privileged events in GitHub issue discussions and pull requests [11],
for enhancing the automatic classification of developer roles in OSS communities.

4.2 Implications

Structures of DL communities. The PyTorch and TensorFlow communities have 9.1% and
24.5% of their developers who take the roles as core developers (RQ1). The percentage of core
developers in deep learning communities is considerably higher compared to that of other OSS
communities studied in previous work. For instance, merely 3.9% (15 out of 388) developers were
identified as core developers in the Apache community [66]; the percentage of core developers is
even lower (0.02%, 3 out of 1,518) for some OSS projects hosted on SourceForge [26]. We consider
this reasonable as GitHub, functioning as a social work environment, offers greater transparency
compared to conventional open-source environments [91]. The incorporation of the pull request
system in GitHub serves to standardize the contribution process, thereby lowering the barriers
for contributions [74]. This heightened transparency and standardized process empower GitHub
projects to attract a broader and more diverse spectrum of software practitioners. Besides, in
3https://discuss.tensorflow.org/
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recent years, there has been a marked surge of interest in deep learning, alongside substantial
corporate involvement in relevant OSS projects [41]. Such involvement may potentially instigate
transformative shifts in the structures of OSS communities, as evidenced by prior studies [83]. Future
research could systematically investigate the transformative shifts occurring in the structures of OSS
communities, particularly in swiftly evolving domains, and evaluate how corporate involvement
affects the shifts.
Contributions of common developers across DL communities. In RQ1, we identified 12
developers who hold core roles in both communities, wherein 33% exhibit spatial similarities in
the pull requests they have contributed to the two projects. In addition, 33% of the 97 developers
who hold core roles in one community and peripheral roles in the other demonstrate in their pull
requests across the two projects. Prior work has also noted the tendency of software practitioners to
engage in multiple open-source communities concurrently [80]. The resemblance in contributions
might stem from the expertise of these practitioners. Therefore, coordinators in deep learning
communities could consider historical code contributions from relevant projects while recruiting
new developers. Future research could develop automatic approaches for identifying pertinent
projects and potential candidates based on their code contributions, to facilitate the recruitment
process.
Technical Background of DL Framework Developers. Over half of the core developers in
PyTorch (64.4%) and TensorFlow (56.1%) are hired by the leading companies in the two commu-
nities, Meta and Google, in the development of the two deep learning frameworks (RQ1). Similar
to other software systems like Linux and OpenStack, leading companies play a crucial role in the
corresponding OSS communities [102]. Specifically, the leading companies not only serve as the
primary sponsors of the corresponding deep learning frameworks, but also hire a large number
of their core developers to contribute to these projects. Prior work indicates that the intensive
participation of companies could benefit the sustainability of OSS projects, such as PyPI [92] and
OpenStack [103]. Future studies could explore how the contributions of the employees in leading
companies affect the development of deep learning frameworks.

Meanwhile, a notable percentage of core developers in the two communities hold Ph.D. degrees,
with 25.9% in PyTorch and 21.9% in TensorFlow; some core developers are affiliated with top-
tier universities such as Cornell, MIT, and UC Berkeley (RQ1). The educational background and
research experience of core developers in the two communities suggest the participation of academia
in the development of deep learning frameworks. Nonetheless, previous studies [44, 71, 79, 81]
indicate that the collaboration between interdisciplinary groups (i.e., researchers and developers) in
software development could be challenging due to the differences in their educational background,
mindset, and end goals (research vs. software products). Future studies could investigate the unique
challenges posed by the development of deep learning frameworks due to the collaboration between
academia and industry.
Retention and dropout of core developers in DL communities. The TensorFlow community
demonstrates a comparatively lower retention rate of core developers across its releases in contrast
to PyTorch, approximately between 50% and 70% compared to between 60% and 80% observed in
PyTorch (RQ2). Moreover, the relatively higher dropout rate of core developers in the TensorFlow
community suggested that more core developers tend to leave the TensorFlow community in
the long term, as compared to PyToch. Sustaining a high retention rate is pivotal in upholding
the technical proficiency and productivity of OSS projects [108]. Considering the popularity of
TensorFlow, future work could systematically investigate the impact of various factors, such as
major releases, on the enduring engagement of core developers in the TensorFlow community.
Causal relationships between community characteristics and project popularity. Our
study provides empirical evidence demonstrating the statistically significant and sizable causal
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relationships between community characteristics and the popularity of deep learning projects (RQ3).
In particular, the increase in the retention rate of core developers in the PyTorch community leads
to an upsurge in project popularity within six months. Conversely, the increase in the popularity of
the TensorFlow project causes a boost in the retention rate of core developers after two months.
Prior study [13] identified statistically significant yet weak positive correlations between the
number of stars and the quantify of contributors and commits in OSS projects. The positive causal
relationships between retention rate and project popularity observed in our study emphasize the
importance of incorporating effective strategies for OSS communities to retain core developers,
including implementing transparent governance mechanisms like roadmaps [1] and establishing
explicit reputation systems for contributors [63].
Generalization Implications beyond Case Study. Our study of PyTorch and TensorFlow
revealed significant insights into how community structures and contributor roles evolve and
influence project popularity. These findings, while derived from two prominent deep learning
frameworks, may suggest broader implications applicable to other OSS projects. Firstly, the signifi-
cant overlap of contributors between the two communities, with spatial and temporal similarities
among the contributions (RQ1), indicates the existence of a common labor pool of contributors,
which is also observed in prior work [31]. Understanding the labor pool across OSS projects offers
a perspective for proposing effective recruitment and retention strategies. Future research could
incorporate labor pool factor when analyzing the sustainability and success of OSS projects. In
RQ2, we discovered a statistically significant decreasing trend in the inflow rates of core devel-
opers across both communities, indicating potential challenges in engaging new contributors
as projects progress. Our findings regarding structured role transitions and the backgrounds of
core contributors suggest patterns applicable to other OSS initiatives. OSS community managers
and project leaders can use these principles to enhance engagement and foster project growth.
Additionally, previous studies have extensively explored relations between the communities and
popularity of OSS projects [10, 15, 59, 59, 75, 90]. We are the first to introduce PCMCI, a causal
discovery technique, to evaluate the causal effects between community characteristics and project
popularity. Our findings show that retention and core-to-peripheral rates are negatively coupled
within the same month, and the influx of developers into core development teams results in a
subsequent increase in active users over time (RQ3). OSS community managers and project leaders
can leverage these causal relationships to improve community engagement and project popularity
in their contexts. Nonetheless, it is crucial to consider the unique aspects of each project when
generalizing these findings. Future research could validate or expand upon our findings across
different OSS communities by employing causal discovery techniques and longitudinal analysis
used in our study.

5 THREATS TO VALIDITY

Internall Validity. The cross-linking between the commit author and GitHub user may not always
be correct, potentially threatening internal validity. We expect potential noise to be introduced due
to the aliasing recognition heuristics. To mitigate such threat, we devised a series of heuristics for
recognizing aliases of developers that are widely used in previous studies on OSS communities [39,
53, 93]. To evaluate the accuracy of cross-linking results, we randomly selected a sample of 100
pairs of matched commit authors and GitHub users from our dataset. We then manually examined
their corresponding commit logs and GitHub pages. Out of the 100 pairs, 95 were evidently correct
(95%), 4 were clearly incorrect (4%), and the remaining 1 (1%) could not be validated based on the
information publicly available.
External Validity. We focus our comparable case study on two representative deep learning
frameworks, PyTorch and TensorFlow, which have been the subjects of numerous empirical
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studies in software engineering. Like other case studies, our findings on PyTorch and TensorFlow
may not be directly generalizable to other deep learning frameworks, such as Keras, Google
JAX, and Deeplearning4j, introducing potential threats to external validity. Nonetheless, the
phenomenon we observed, along with the implications and insights we gained regarding PyTorch
and TensorFlow, have the potential to guide the governance of other deep learning communities
and a broader range of OSS communities.

Additionally, we collected historical data from the PyTorch and TensorFlow communities on
GitHub up until August 1, 2022. This cutoff may exclude future activities in these communities,
potentially posing threats to external validity. It is particularly noteworthy that the major release
2.0.0 of PyTorch, which occurred on March 15, 2023, may influence the evolution of the PyTorch
community. To validate our findings regarding the evolution of deep learning communities, we
extended the dataset throughMay 2024 and conducted experiments for RQ2 to examine the evolution
of contributors with diverse roles, role ratios, and role transitions across multiple releases in both
communities. Our extended analysis largely corroborates our initial findings, with only a few minor
variations. In particular, the ratio of active users to developers in the PyTorch community generally
exceeds that in the TensorFlow community (≤ 2.0 vs. ≥ 2.4). The TensorFlow community
experienced its lowest number of active users, 230, at the release of version 1.13.0. The trends in
role transitions for both communities remain consistent, although the significance levels have
increased, as indicated by the changes in p-values. Notably, the PyTorch 2.0.0 major release
exhibits a comparable impact on the evolution of the PyTorch community as observed with the
preceding major release 1.0.0. Specifically, the 2.0.0 release is associated with substantial growth in
the numbers of contributors: active users increased from 955 to 1723, peripheral developers from
264 to 447, and core developers from 108 to 121. Furthermore, substantial increases were observed
in multiple role ratios, including the peripheral-to-core developer ratio (from 2.4 to 3.7), the active-
user-to-developer ratio (from 2.6 to 3.0), and the dropout rate (from 0.07 to 0.18). In contrast, the
release also corresponded with decreases in the inflow rate (from 0.22 to 0.19), the retention rate
(from 0.69 to 0.63), and the core-to-peripheral ratio (from 0.20 to 0.19). These findings indicate
that our collected dataset is robust and sufficiently comprehensive to accurately characterize the
evolution of deep learning communities.

6 RELATEDWORK

6.1 Software Engineering for DL and ML

In software systems empowered by DL/ML capabilities, DL/ML contributes individual or multiple
components to larger systems that also integrate non-DL/ML components, with their development
facilitated by DL/ML frameworks and platforms. Considerable attention in practice focuses on
building robust pipelines for training and deploying DL/ML models in a scalable fashion, frequently
referred to by “AI engineering”, “AIOps” and “MLOps” [29, 58, 60].

Some researchers have conducted empirical studies aimed at exploring a range of technical aspects
in DL/ML frameworks, platforms, and software systems, such as bugs in TensorFlow [101] and ML
software systems [89], faults in DL frameworks (TensorFlow, Keras and PyTorch) [46], program
failures of jobs on a DL platform in Microsoft [99]. Other researchers have focused on investigating
software engineering practices involved in the development of DL/ML systems, including shifts
in software engineering practices [5, 96], testing methodology tailed for these systems [17, 73],
misuse and updates of libraries [30, 94], refactoring practice [86], collaboration in building these
systems [67], and engineering challenges gleaned from Stack Overflow posts [21, 37, 95, 100].
Nonetheless, little is known about the OSS communities that contribute to the development of

DL frameworks, thus our study aims to address this gap.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.



24 Yunqi Chen, Zhiyuan Wan, Yifei Zhuang, Ning Liu, David Lo, and Xiaohu Yang

6.2 Empirical Studies on OSS Communities

Prior work has characterized the joining process in open-source communities as one that fol-
lows the onion model [68]. Newcomers start as observers and passive users (outermost layer),
eventually moving up the hierarchy to become contributors and then core developers (innermost
layer). The inner layers are associated with more technical and higher reputation roles, and the
movement across the layers is referred to as a migration [49]. The distinction between the different
roles of developers is represented as a dichotomy consisting of core and peripheral developers.
Core developers play a critical role in developing system architectures and shaping leadership
structures. In contrast, peripheral developers are irregularly involved in bug fixes or small-scale
improvements. Researchers have proposed diverse operationalizations for classifying contributors
in OSS communities, including count-based metrics [51, 66], network-based metrics related to bug
trackers [26], change logs [62], mailing lists [51], access to core project files [98], and participation
in privileged events [11]. In our study, we adopt four operationalizations, including both count-
and network-based metrics, to classify developers contributing to the development and evolvement
of deep learning frameworks. Additionally, we conduct a comparative evaluation of the outcomes
derived from the operationalizations.

Researchers have intensely investigated diverse factors that influence the sustainability of OSS
communities, including enduring engagement of contributors [107], developer turnover [33], so-
cial capital [76], activities carried out by elite developers [97], onboarding processes [34], and
the involvement and collaboration of corporate entities [104]. Moreover, previous studies have
investigated the factors that affect the popularity of OSS projects, encompassing considerations like
programming languages [9, 13], application domains [13], social media [32], and documentation
updates [4]. Different from the studies above, we focus our research on characterizing OSS commu-
nities of deep learning frameworks in terms of their structures and evolution patterns. Additionally,
we aim to explore the causal relationships between community characteristics and the popularity
of deep learning frameworks.

7 SUMMARY AND FUTUREWORK

In this paper, we conducted a comparative study to empirically investigate the characteristics of
open-source communities associated with two representative deep learning frameworks, PyTorch
and TensorFlow. Specifically, we characterized various contributor roles in the communities
as well as the evolution of community structures and role transitions across project releases,
and explored the impact of community characteristics on project popularity. We find that the
TensorFlow community hosts a larger contributor base, featuring a higher proportion of core
developers in its development team and a more extensive cohort of active users compared to the
PyTorch community. In the two communities, 64.4% and 56.1% of developers are employed by
the leading companies behind the projects, while 25.9% and 21.9% of core developers hold Ph.D.
degrees, and 77.2% and 77.7% contribute to other ML/DL open-source projects. Developers shared
between the two communities exhibit spatial and temporal similarity to some extent in their pull
requests across their respective projects. The evolution of contributors with various roles exhibits
a consistent upward trend over time in the PyTorch community. Conversely, the TensorFlow
community experiences a noticeable turning point in its evolution. Both communities demonstrate
a statistically significant decreasing trend in the inflow rates of core developers. Furthermore, the
study reveals that the expansion of peripheral developers and the retention of core developers
demonstrate statistically significant and positive causal effects on the popularity of PyTorch, while
the expansion of active users exhibits statistically significant and negative causal effects on the
popularity of TensorFlow.
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Future work could devise automatic approaches that integrate various data sources for effective
developer classification in OSS communities, and consider the causal effects identified between
community characteristics and project popularity when formulating strategies for sustaining deep
learning communities.
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A APPENDIX

(a) Contributor A in PyTorch (b) Contributor A in TensorFlow

(c) Contributor B in PyTorch (d) Contributor B in TensorFlow

Figure 9. Examples pull requests of two common core developers across communities (Contributor A and B).

(a) PyTorch

(b) TensorFlow

Figure 10. Example pull requests of a common developer across communities, who takes the peripheral role

in the PyTorch community and the core role in the TensorFlow community.
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