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ABSTRACT

Software architecture has been an active research field for nearly
four decades, in which previous studies make significant progress
such as creating methods and techniques and building tools to sup-
port software architecture practice. Despite past efforts, we have
little understanding of how practitioners perform software archi-
tecture related activities, and what challenges they face. Through
interviews with 32 practitioners from 21 organizations across three
continents, we identified challenges that practitioners face in soft-
ware architecture practice during software development and main-
tenance. We reported on common software architecture activities
at software requirements, design, construction and testing, and
maintenance stages, as well as corresponding challenges. Our study
uncovers that most of these challenges center around management,
documentation, tooling and process, and collects recommendations
to address these challenges.

1 INTRODUCTION

Software architecture refers to a collection of design decisions that
affect the structure, behavior, and overall quality of a software sys-
tem [20, 79], serving as the foundation for subsequent decisions [77].
The research field of software architecture has achieved tremendous
progress since its inception in the 1980s [85]. In the 2000s, there has
been a paradigm shift in understanding the essence of software ar-
chitecture, moving from a purely technical view to a socio-technical
view. The early paradigm centered around the tangible outcomes
of software architecture practice, such as the structure and behav-
ior of software systems, their components and connectors, and
the use of views, architecture description languages, design meth-
ods and patterns [16]. The subsequent paradigm concerned how
stakeholders reach the outcomes through software architecture
practice, specifically how they reason about their choices and make
architectural decisions [38]. Previous studies have put effort into
developing methods and tools for architecture representation and
documentation [15, 38], analysis and evaluation [41, 73], recovery
and optimization [2, 30, 54], as well as knowledge management and
decision making [16, 100] to support software architecture practice.

Despite these efforts, we have little understanding of how prac-
titioners actually perform software architecture practice during
the development and maintenance of software systems, and what
challenges they encounter in practice. To systematically explore
the challenges and point improvement towards better practice, we
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conducted interviews with 32 participants involved in the design,
implementation and maintenance of software architectures. Our
research question is what are the software architecture related activ-
ities performed in practice, and the corresponding challenges faced by
practitioners? Interview participants come from 21 organizations of
varying sizes, from small startups to large technology companies.
They have diverse roles in software development and maintenance,
including architect, development, testing and project management.
During the interviews, we explored various aspects of software ar-
chitecture practice, including the architectural styles applied, tech-
niques and processes followed, and tools utilized. We also sought
to identify where challenges arise in software architecture practice
during software development and maintenance.

We observe that challenges in software architecture practice sur-
face at different stages of software development and maintenance
process: (1) Evolution and changes of software requirements at
the requirements stage; (2) Design documentation, requirements
decomposition, and architecture analysis and evaluation at the
design stage; (3) Architecture conformance checking, continuous
architecture monitoring, and code quality at the construction and
testing stage; and (4) Architecture erosion and refactoring at the
maintenance stage. Even though architectural styles and software
architecture practice differ substantially across organizations, we
find common patterns of architectural styles and associated chal-
lenges. Overall, our observations suggest four themes that would
benefit from more attention with respect to management (%), doc-
umentation (B), tooling (%), and process (#%): (1) Fostering an
organization-wide culture of building high-quality architecture; (2)
Paying more attention to the up-to-dateness and traceability of
design documentation; (3) Adopting and developing effective tools
to support software architecture practice; and (4) Improve the reuse
of architecture knowledge to facilitate architecture design.

In summary, this paper makes the following contributions: (1)
We identified challenges in software architecture practice during
software development and maintenance through interviews with 32
practitioners, triangulated with a literature review; (2) We provided
recommendations for improving software architecture practice and
outlined future avenues of research. The remainder of the paper is
structured as follows. In Section 2, we briefly review related work.
In Section 3, we describe the methodology of our study in detail.
Sections 4, 5, 6 and 7 present the results of our study. We discuss
the implications of our results in Section 8 and any threats to the
validity of our findings in Section 9. Section 10 draws conclusions
and outlines avenues for future work.
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2 RELATED WORK

Structural Construction of Software Systems. Software archi-
tecture practice embraces the concept of architecture view, which
represents a partial aspect of the high-level structures of a software
system [20]. Researchers propose various approaches for document-
ing the relevant views of software architecture to help practitioners
successfully use it, maintain it, and build a software system from
it, including unified modeling language, architecture description
languages (e.g., [58]), and domain-specific languages (e.g., [59]).
Despite the development of formal approaches for specifying soft-
ware architectures, in practice, natural language is widely used in
documenting software architectures, sometimes accompanied by
diagrams of informal models [70]. The benefits of software archi-
tecture documentation have been widely investigated in previous
studies, e.g., serving as an educational tool to introduce new team
members to a software project [20] and reduce entry barriers for
new contributors in OSS development [42]. In this paper, we explore
how software practitioners capture and document software architec-
ture.

Design Decisions. The early literature has made great efforts to
develop approaches and tools for capturing architecture design deci-
sions explicitly, including formal models (e.g., [39]) and description
templates (e.g., [97]). The formal models and description templates
have consensus on capturing rationale, constraints, and alternatives
of architectural design decisions [84]. Recently, researchers pro-
pose approaches for the automatic extraction of design decisions
from different information sources (e.g., [49]), e.g., email archives,
issue management systems, commit messages, and Stack Overflow.
In addition, researchers conduct empirical studies to investigate
architectural decision-making practice including decision-making
process (e.g., [33]), methods (e.g., [26]), and tools (e.g., [31]), and
shift their focus towards addressing the social and psychological
aspects of architectural decision making behaviors including nat-
uralistic and rational decision making [66], cognitive biases [67],
and group decision making [11, 80]. In this paper, we explore how
software practitioners make architectural design decisions.
Software Evolution. From an evolution perspective, architecture
analysis and evaluation is a preventive activity to improve quali-
tative attributes, delay architectural decay, limit the effect of soft-
ware aging, and identify architectural drift and erosion of soft-
ware systems [55, 96]. Previous studies propose a wide spectrum
of approaches and tools for architecture analysis and evaluation,
including extracting intuitions and experiences of stakeholders and
further using their tacit knowledge (e.g., [13]), creating scenario
profiles for a concrete description of quality attributes (e.g., [72]),
architecture conformance and compliance checking (e.g., [93]), and
using various quality metrics (e.g., MoJoFM [102]).

Architectural changes occur during regular development and
maintenance activities, which involve a wider spectrum of code
components, as well as dependencies among them than local code
changes [82]. It is complex for practitioners to comprehend the
scopes and impacts of architectural changes [91, 98]. The com-
plexity elevates the cost and effort of implementing architectural
changes across the software development lifecycle [103]. In this pa-
per, we explore how software practitioners perceive software evolution,
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as well as how they conduct architectural changes and address the
evolution problems from the architectural perspective.
Architecture Knowledge Management. It has been suggested
that “if it [an architecture design] is not written down, it does not ex-
ist” [19], thus to prevent knowledge vaporization and architectural
drift, a plethora of works on capturing different types of architec-
ture knowledge have emerged for modeling design decisions and
rationale. The uses for architecture knowledge span four broad
categories, i.e., sharing, compliance, discovery and traceability [23].
A shared understanding of architecture knowledge among stake-
holders of software systems alleviates miscommunication and infor-
mation overload, especially for the software systems that are pro-
duced by practitioners from different geographic areas [27]. Due to
the large number of stakeholders and the dispersion of knowledge,
it is challenging to effectively share and reuse architecture knowl-
edge [62]. Architecture knowledge enables evaluation and review
of architecture compliance (e.g., [101]), in terms of requirements
missing and conflicting, conflicts between requirements and design,
and violation of design principles. The discovery of architecture
knowledge allows reasoning and uncovering design problems and
alternatives [16]. Traceability of architecture knowledge improves
understandability of software architectures, helps to locate relevant
knowledge, enables impact analysis of architectural changes, and
facilitates design review, evaluation and assessment [50, 78]. In this
paper, we explore how software practitioners manage architecture

knowledge.

3 METHODOLOGY

We adopted a qualitative research strategy to explore software
architecture practice in software development and maintenance
and corresponding challenges, with interviews of software prac-
titioners in the industry. Our study consists of four steps: (1) We
prepared an interview guide informed by an initial literature re-
view, (2) We conducted interviews, (3) We triangulated results with
literature findings, and (4) We validated the findings with our inter-
view participants. We based our research on Straussian Grounded
Theory [87, 88], which derives research questions from literature,
analyzes interviews with open and axial coding, and consults lit-
erature throughout the process. Specifically, we simultaneously
conducted interviews and reviewed literature, utilizing immediate
and continuous data analysis, making constant comparisons, and
refining our codebook and interview guide throughout the study.

Step 1: Scoping and Interview Guide. To scope our research and
prepare for the interviews, we searched for software architecture
practice discussed in the existing literature on software engineering
(Section 2). In this phase, we selected 28 papers opportunistically
through keyword search and our personal knowledge of the field.
We applied standard open coding process [87] to identify sections in
the papers that potentially relate to software architecture practice.
Although most papers did not directly address challenges in soft-
ware architecture practice, we marked discussions that potentially
related to challenges, e.g., inadequate knowledge management for
design decisions. We then analyzed and condensed these codes
into the stages of software development and maintenance, and
developed an initial codebook and interview guide (provided in
Supplement A and Supplement B).
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Step 2: Interviews. The first author conducted a series of inter-
views with 32 software practitioners from 21 organizations', 4
in-person and 28 online interviews. Each interview is 45 to 60 min-
utes long. The interviews were semi-structured and made use of
the interview guide, which was sent to the participants before the
interviews. All the interview participants are involved in industrial
software projects. The demographics of interview participants are
summarized in Table 1, with details found in Supplement C. Note
that some participants take more than one role in their projects.
Participant Selection. We selected participants with the maxi-
mum variation sampling method [89] of purposeful sampling to
cover participants with different job roles and in various types of
organizations. We adapted our recruitment strategy throughout the
study based on our findings in the interviews. In the later stages of
the study, we focused on specific roles and organizations to fill gaps
in our understanding. Participant selection, data collection and data
analysis continued until saturation was reached and a rich descrip-
tion of experience had been obtained. New codes did not appear
anymore in data analysis; the set of codes was considered stable. We
recruited potential participants with necessary software architec-
ture knowledge through personal networks and recommendations
from previous participants. We separately interviewed multiple par-
ticipants within the same organization to get different perspectives.
Given that some organizations with multiple business units may
adopt different software practice, we recruited several participants
from each business unit for those organizations. For confidentiality,
we refer to organizations by number, and participants by PI; where
I refers to the organization number and j distinguishes participants
from the same organization.

Data Analysis. All interviews were recorded, transcribed and ana-
lyzed using constant comparative method. Data collection and data
analysis took place simultaneously. After each interview, the first
author transcribed the recording of the interview, open coded the
transcript using NVivo qualitative analysis software [52]. Specifi-
cally, the first author broke the transcript down line-by-line into
concepts termed meaning units, labeled the units with codes, and
continuously compared similar codes. To ensure the quality of
codes, the second author reviewed the initial codes created by the
first author and provided suggestions for improvement. These sug-
gestions were discussed and incorporated into the codes. After the
open coding stage, we generated a total of 272 unique codes of
software architecture activities and challenges — 15 to 79 codes
for each interview. Next, we conceptualized the resulting codes
by specifying the relationship between them and integrating them
into categories, e.g., design documentation and architecture erosion.
Finally, we mapped these categories to software development and
maintenance phases, e.g., software requirements and software con-
struction and testing. In addition, we created visualizations of ar-
chitectural styles in each organization (provided in Supplement
D), and used these visualizations to explore whether the concepts
associated with certain types of architectural styles.

Step 3: Triangulation with Literature. Triangulation refers to
the use of multiple methods or data sources in qualitative research
to increase the credibility and validity of research findings [74],

! The interviews were approved by the relevant institutional review board (IRB) Partici-
pants were instructed that we wanted their opinions; privacy and sensitive information
would not be intentionally mentioned.
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Table 1: Participant and company demographics.

Type Break-down

Participant Role (32) Architect (17), Development (13), Project
Management (11), Testing (2)

Participant Seniority (32) 10 years of experience or more (14), 5-10
years (17), under 5 years (1)

Big tech (7), Non IT (6), Mid-size tech (5),
Startup (3)

Asia (14), North America (5), Europe (2)

Company Type (21)

Company Location (21)

which is also used in grounded theory research on software engi-
neering (e.g., [71]). We used methodological triangulation, which
involves the use of two methods to gather data, i.e., interviews and
literature review. Specifically, as we gained insights from inter-
views, we returned to the literature to identify related discussions
and potential solutions to triangulate our interview results. We
pursued a best-effort approach that relied on keyword search for
themes that surfaced in the interviews, as well as backward and
forward snowballing. Consequently, we identified 65 papers as pos-
sibly relevant and coded them with the evolving codebook. The
data from the papers were used to confirm and support the findings
of the interviews, representing triangulation. The complete list of
the 65 papers can be found in Supplement E.

Step 4: Validity Check with Interview Participants. For assess-
ing fit and applicability as defined by Strauss and Corbin [87] and
validating our findings, we returned to our participants after cre-
ating a full draft of this paper. We presented the participants with
both the full draft and a summary of the challenges and recommen-
dations that emerged during the interviews, along with questions
that prompted them to look for correctness and areas of agreement
or disagreement (i.e., fit), and any insights gained from reading
experiences of the other companies, roles, and the overall findings
(i.e., applicability). Specifically, participants were asked to indicate
agreement or disagreement by placing a tick or cross next to each
challenge or recommendation based on their realm of experience;
they were also asked if they had any insights to add. All participants
indicated general agreement and six responded with comments,
several explicitly reaffirmed some findings. We incorporated three
minor suggested changes to details in the recommendations.

4 SOFTWARE REQUIREMENTS

Some software requirements, particularly certain non-functional
ones, have a global scope in that their satisfaction cannot be allo-
cated to a discrete component in a software system. A requirement
with a global scope could affect the software architecture and the
design of many components.

Unpredictable evolution and changes of software require-
ments complicate architecture design (3&, ff). Architects per-
form architecture design towards a visionary future by foresee-
ing the potential evolution and changes in software requirements.
Practitioners expect software systems to evolve and iterate spon-
taneously as requirements change over time (Pla, P2a, P3b, P3e,
P4a, P4d, P6a, P7a, P10a, P12a, P13a, P14a, P15a, P17a, P18a). For
example, Pla (architect) shared, “we had to think about scaling up
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the capacity, handling more users, and dealing with increased con-
currency in our architecture design ... we were looking ahead, maybe
in the next 2 to 3 years, considering that the business requirements
would evolve.” However, requirements sometimes tend to change
and evolve in an unpredictable way, including the increasing vari-
ety of users (Pla, P10a, P11a), the change in business requirements
of the whole industry (P4a, P11a, P14a), and the evolution of tech-
nology stacks (P3e, P7a, P8a, P9a, P11a, P12a, P13a, P15a). The
unpredictable evolution and changes of requirements sometimes
make it infeasible to deliver new features or meet the quality re-
quirements with current architectures, as frequently mentioned in
the literature [3, 8, 22, 24, 60, 90, 92].

In practice, even experienced architects cannot design a perfect
software architecture that can support evolution and changes of
requirements in the long-term future, especially with modest time
and resources (Pla, P2a, P3e, P4d, P8a, P11a, P12a, P13a, P14a,
P15a). Some participants explained that the challenges arise because
“requirements violate the original assumptions about the expected
quality attributes of the software systems, e.g., capacity, number of
concurrent users, and TPS [number of transactions per second]” (P2a,
developer). Other participants explained, a “perfect” architecture
could cost far more than affordable. Given the development of
technology stacks are fast and evitable, aggressive adoption of
the latest technology increases development cost (P6a, P11a). For
instance, transaction-based features can be hardly implemented
with a non-transaction-based architecture of a software system
(P3e).

Recommendations. It is important for architects to make trade-
offs between multiple factors with awareness of requirements volatil-
ity and unpredictability (). It seems beneficial to adopt more

formal architecture documentation for capturing the tradeoffs in

architecture design, and constructing trace links between require-
ments and design decisions (), which has been suggested in the

literature [6, 10, 29]. The explicit capturing of tradeoffs and their

rationales facilitates the communication of essential design deci-
sions among various stakeholders, and the reuse of architecture

knowledge. A practical strategy could be designing a software archi-
tecture that can support the evolution and changes in requirements

for one to three years in the future (P2a). Some participants sug-
gest a reactive strategy to overcome requirements volatility and

unpredictability — a standard process for adapting, refactoring, and

retiring software architectures () (P2a, P3g).

5 SOFTWARE DESIGN

Jan Bosch emphasized that “designing a system can be viewed as
a decision process” [12]. Practitioners work with various stake-
holders to make design decisions with a high-level view of both
business and technical aspects of software systems. We observed
challenges in design documentation, design principle application,
and design quality analysis and evaluation with respect to software
architectures.

5.1 Design Documentation

Design documentation describes information about the design, in-
terfaces and functionality of software to support practitioners in
their development and maintenance activities, by which the diverse
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stakeholders communicate with the design team and with each
other [83].

Use of models and tools is inadequate to ensure the com-
pleteness of architecture documentation (B, £8). Most organi-
zations provide unified templates for architectural specifications,
but no adequate support of models and tools to ensure the complete-
ness of architecture documentation. As reported by participants, the
common parts of architectural specifications across organizations
include views of software architecture, interface specifications, and
rationales behind design decisions. Some large-scale organizations
allow customization to organizational-wide templates for different
business units (e.g., P3d (architect): “we’ve tweaked the company’s
templates to better suit our specific business needs.”). Nonetheless, no
participants reported that they use any formal models or tools to
make sure that architecture documentation is complete for commu-
nication. Some participants mentioned that sometimes they cannot
find the relevant information in architecture documentation (P9a,
P19b). The incompleteness of design documentation is also dis-
cussed in the literature (e.g., [105]).

Architecture documentation becomes obsolete as software
evolves (B, f). Participants reported that design documentation
tends to suffer from up-to-dateness problems. Most participants
observe the inconsistency between design documentation and code
implementation as software systems evolve, e.g., when integrat-
ing new features into the systems and bug fixing (P3b, P3e-g, P4c,
P6a-b, P7a, P8a, P9a, P10a, P11a, P12a, P14a, P18a, P19a-b, P20a,
P21a). The documentation-code inconsistency would confuse the
developers who perform development tasks. Moreover, a few par-
ticipants in agile projects reported that documentation tends to be
missing for new features or components due to a fast development
pace. Pé6a (developer) explained, “the traditional modeling method
like UML becomes a significant roadblock to fast-paced design in
agile development”. Whereas the literature discussed challenges in
providing up-to-date software documentation (e.g., [1]), our inter-
viewees were concerned about the inconsistency between design
documentation and code implementation in particular.
Inadequate tool support for sharing, version control, and
tracing of scattered design documentation (B, £%). Design doc-
umentation is written and organized with a wide variety of methods
across and within organizations as reported by our participants
(P3b, P3e, P3g, P4a, P5a, P6a, P7a, P11a, P13a, P14a). We observe
that most participants use traditional text processing software to
write design documentation, and version control systems to keep
track of changes in documents. For example, P3g (project manager,
architect) described, “we simply use Microsoft Office Word to cap-
ture our design documents.” The ineffective methods for organizing
design documentation further impact its usability for readers, e.g.,
information findability and content searchability, as well as its use-
fulness for practical use in software development and maintenance.
These findings align with literature past observations that design
documents are typically written in natural languages with support-
ing diagrams [25]. In most organizations, practitioners performed
detailed design for a module or microservice with the architecture
documentation of interface-level design as input. Some of the prac-
titioners reported they included detailed design documentation in
code comments (P2a, P6a), but few intentionally build the trace
links between architecture and detailed design documentation.
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Recommendations. Architecture documentation quality is im-
portant to understand and evolve software architectures, as well
as training and education of developers (B). Participants empha-
sized the completeness, up-to-dateness, usability and usefulness
of design documentation in our interviews (P2a, P3a-g, P4a, P5a,
Pé6a, P11a, P12a, P19a). The importance of high-quality documen-
tation is frequently discussed in the literature (e.g., [20]). As for
layered architectures, interface specifications provide the standard-
ized mechanism in which subsystems can effectively communicate
with each other and enable them to operate as independent mod-
ules (P3a, P3f). When it comes to microservices architectural style,
some organizations limit the scope of interface specifications at the
microservice level in a software system (P4a, P5a).

Some organizations have a standard process to make design doc-
umentation up to date, in which developers cannot merge their
code unless the corresponding design documentation has been up-
dated, and use wikis to host design documentation (f#) (P4c, P19b).
Placing documentation in standard locations is an effective practice
to help practitioners locate it, as suggested in the literature (e.g.,
[1]). Some organizations adopt collaborative writing tools for the
generation and sharing of design documentation (P4d, Pé6a-b, P11a,
P14a, P19a-b; #}). In contrast, a few participants suggest applying
the “code as documentation” principle® to avoid extra cost and
efforts for writing and maintaining design documentation (P4a,

P5a; @)

5.2 Design Principles

Practitioners applied a wide range of design principles when de-
signing software architectures, including abstraction, coupling and
cohesion, decomposition and modularization, encapsulation and
information hiding, separation of interface and implementation,
and separation of concerns.
Unclear boundaries between architectural elements in soft-
ware systems (&, f)). Some practitioners observe challenges in
understanding underlying businesses when it comes to the decom-
position of architectural components (P3a, P4d, P5a, P8a, P9a, P11a,
P19a, P21a). As P3a (architect) explained, “one cannot elegantly de-
compose a software system by simply collecting and listing a bunch
of business scenarios” The misunderstanding of businesses leads
to unclear boundaries between architectural components in a soft-
ware system, and further affects the quality and productivity of the
detailed design of the system. Software decomposition has been ex-
tensively studied in prior research of software engineering [53, 64],
in which software clustering has become an active research area.
software clustering is defined as the process of decomposing large
software systems into smaller, manageable, highly cohesive, loosely
coupled, and feature-oriented subsystems [21]. A recent study [81]
presents a systematic literature analysis to structure and categorize
the state-of-the-art research evidence of software clustering over
the past decade.

As for a microservice architecture, it is challenging to decompose
a software system into the optimal number of microservices with
appropriate levels of granularity (P3a, P4d, P5a, P11a) [18, 48]. On
the one hand, the granularity and number of microservices would
affect the code quality and cost efforts in subsequent development
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activities. P5a (architect) shared, “bigger microservices tend to have
tedious interfaces, while smaller microservices tend to introduce more
cost and efforts when testing and addressing issues when integrating
microservices” On the other hand, the granularity and number of
microservices could make an impact on the satisfaction levels of
non-functional requirements, e.g., the latency of service invocation.
Interdisciplinary knowledge is required to lower coupling
and improve cohesion of software ("&", ﬁ). A common theme
in the interviews is that it is challenging to design a software sys-
tem that is loosely coupled and highly cohesive (P2a, P3a-b, P3f-g,
P4a-b, P6a, P11a). As participant P3a (architect) explained, “business
requirements change over time in different frequencies ... a compo-
nent [in a software system] tend to be highly coupled with others
[as the system evolves] if it is responsible for both frequently and
rarely changed requirements.” A highly coupled and low-cohesive
software architecture could further lead to difficulty in the planning
and management of subsequent software development activities,
like detailed design and implementation. Identifying the business
requirements with potential changes in the future requires inter-
disciplinary knowledge of both architecture design and businesses
for practitioners.

Recommendations. Decomposition and modularization are im-
portant to architecture design as a principle most frequently men-
tioned in our interviews (8. It is crucial to place different func-
tionalities and responsibilities in different components of software
systems (P3a-d, P3f-g, P4a, P5a). The decomposition of software
systems occurs from two perspectives, vertically decomposing a
software system into layers and horizontally decomposing the sys-
tem into smaller components. For software systems with layered
architecture styles, practitioners usually emphasize vertical decom-
position for isolating software from physical hardware changes. The
isolation further makes it easier to move the software components
between different hardware solutions for a variety of application
domains. Conversely, for cloud-based and microservice systems,
practitioners emphasize the horizontal decomposition of systems
into microservices and components with a deep understanding of
the underlying business requirements of the systems (P5a; f)). Prac-
titioners should make tradeoffs of balancing the granularity and
number of microservices, as well as balancing the non-functional
requirements for individual microservices and the satisfaction level
for the overall system [18, 35]. To identify and tailor services based
on business requirements, some organizations use Domain-Driven
Design (DDD) as a flexible methodology to create a high level of
microservices architecture design with an iterative design and de-
velopment process (P3a, P3f, P4a, P5a; ﬁ)

Coupling and cohesion are also frequently discussed as important
design principles in our interviews (#)). For different architecture
styles, coupling measures interdependence among architectural el-
ements of different levels of granularity, e.g., components, modules,
layers and microservices, while cohesion measures the strength of
association of architectural elements within a particular scope (P2a,
P3a-b, P3f-g, P4a-b, P6a). For instance, several organizations enforce
the coupling and cohesion principle in terms of separate compila-
tion, testing, release and deployment of modules (P3g). Participants
applied a variety of strategies to lower coupling and improve the
cohesion of architectural elements. Some participants suggested
designing independent architectural elements for change-prone
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businesses when decomposing a software system (P3a, P3g). To
improve the cohesion of a software system, some participants sug-
gested designing a module for common functionalities across busi-
nesses, which interacts with other modules or microservices (P3b,
P4b, P6a).

5.3 Design Quality Analysis and Evaluation

Practitioners take into account various quality attributes that con-
tribute to the quality of software architecture, including quality
attributes at runtime and those not discernible at runtime. To effec-
tively analyze and evaluate the quality of software architectures,
some organizations adopt automated techniques and tools, as well
as measures for quantitative estimation.

Architecture review requires a standard process, active in-
volvement of external experts, and tool support (ﬁ, 1O 'O'g)
The majority of our participants reported that architects and de-
sign teams perform architecture reviews in their projects, yet few
mentioned the involvement of external consultants in architecture
reviews. Architecture review and evaluation intends to uncover
risks and issues in software architectures before they cause tremen-
dous costs later in the software engineering life cycle. Large-scale
organizations tend to conduct formal sessions of architecture re-
view within development teams on a regular basis (P3a, P4c-d, P11a,
P19a), but smaller organizations set up informal architecture review
irregularly, e.g., once after the completion of architecture docu-
mentation and before coding. For instance, Pla (architect) shared,
“informal architecture reviews would take place once every one to
two years during software maintenance, planning for the evolution of
software architectures.”

Participants rely heavily on experience in architecture review
and evaluation process, manually inspecting requirements, multi-
ple potential solutions, and rationale behind architectural design
decisions in architecture documentation (P1a, P2a, P3a, P3d, P4b,
P6a, P9a, P16a). For example, P3d (architect) stated, “senior engineers
and architects often leverage their expertise to evaluate and critique
architectures, and ultimately drive architectural design choices ... their
experience guides them in assessing and shaping the overall architec-
tural landscape.” The widespread use of experience-based reasoning
aligns with findings in the literature (e.g., [7]).

Lack of effective and apply-to-all quantitative measures (¥,
9. Literature has proposed various metrics to measure the quality
of software architectures, including coupling [65] and cohesion [75].
Most participants perceive the importance of measures to effectively
quantify various aspects of software architectures, but identify two
challenges in applying architecture measures in practice (Pla, P3a,
P3b, P3d-g, P4a-b, P11a, P14a, P19a). First, it is challenging to pro-
pose quantitative measures that accurately reflect the in-depth
problems in software architectures (P3a, P4a-b). In some organi-
zations, the implemented quantitative measures for architecture
quality tend to be superficial and lack of theoretical basis. The chal-
lenges come from complexity in the understanding of business logic
as well as the architectures of software systems. Second, no general
criteria exist concerning good-quality architectures across software
systems, making it challenging to enforce organizational-wide mea-
sures for architecture evaluation (P3a, P4a-b). Organizations do not
enforce standard architectural design across business units, leading
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to a variety of architectural styles within organizations. P3a (archi-
tect) explained “the reasonable decomposition of modules is closely
dependent on the underlying scenarios ... the reasonable decomposi-
tion of microservices is also related to businesses ... No measures apply
to all” In some organizations that enforce organizational-wide mea-
sures, participants would adopt a whitelist approach to exclude
special cases whenever the measures do not apply.
Recommendations. Practitioners need to consider both runtime
and non-runtime quality attributes of software systems, but with
different priorities in architecture review (). Performance is the
runtime quality attribute most frequently mentioned in the inter-
views (Pla, P2a, P3a, P3d, P3g, P4a, P5a, P6a, P11a, P15a, P19b),
with example terms of latency and transactions per second. Other
runtime quality attributes are also discussed, e.g., functionality
(P3d, P3g, P4a, P4c, P5a, P11a), availability (P1a, P3a, P3d, P5a, P4c,
P11a), elasticity (P5a, P11a), and security (P1la, P13a). Meanwhile,
most participants emphasized the importance of extensibility and
maintainability as the non-runtime quality attributes of software
systems (P1la, P3a, P3d, P3f-g, P4a, P6a). Some participants also
considered reusability (P2a, P3f-g), compatibility (P3e), and testabil-
ity (P3g). It is also recommended to involve external experts from
other teams to review and evaluate the software architectures, and
provide prioritized recommendations for architecture improvement
(&, B). For instance, P2a (developer) suggested that “the design
teams should collect feedback about API design and encapsulation
from the downstream users”

In terms of tool adoption to support architecture review and
measurement, some participants suggested using simulation and
prototyping techniques to evaluate potential solutions to support
architecture decisions (P3a, P4a-c, P12a). A few participants sug-
gested using static analysis tools for visualizing architectures (P1a),
and checklists when conducting architecture reviews (P5a, P13a).
Given thresholds for measures of architecture quality may differ
across software systems, some participants suggest only applying
a limited set of measures in automated tools for estimating funda-
mental architecture quality within organizations, yet leave the left
as a reference for practitioners to make decisions (P3e, P3f). Other
participants suggest using whitelists to exclude special cases from
the automatic measurement of architecture quality (P3b).

6 SOFTWARE CONSTRUCTION AND
TESTING

The software construction and testing phase relies on the outcomes
of the software design process. We found many challenges dur-
ing this phase stemming from architecture conformance checking,
architecture monitoring, and construction quality.

6.1 Architecture Conformance Checking

Architecture conformance checking aims to ensure the consistency
between the implemented architecture of a software system and its
intended architecture as the system is implemented. The diverges
of implemented architecture from the corresponding intended ar-
chitecture could lead to software architecture erosion [76].



Software Architecture in Practice: Challenges and Opportunities

Automated architecture conformance checking is rare (#).
Despite the common awareness of architecture divergence, partici-
pants rarely rely on automated tools to check architecture confor-
mance in the software construction phase (P1la, P3b-c, P3e, P3f-g,
P4a-c, P6b, P11a, P12a, P13a, P15a, P19b). Instead, some organiza-
tions rely heavily on periodical manual inspection, in line with the
observations of previous studies (e.g., [17]). In the manual inspec-
tion for architecture conformance, inspectors rely on the detailed
description of code changes, especially the architectural changes,
thus the code contributors should provide comprehensive infor-
mation for their changes. P4b (architect) explained, “the detailed
description [of architecture-level code changes] would save the time
of architects to evaluate whether the code changes conform with the
intended architecture”

Obsolete documentation and lack of traceability hinder au-
tomation of architecture conformance checking (B, ff3). Some
participants report several potential obstacles that hinder the adop-
tion of automated tools (P3b, P3g, P4a, P4c, P19a). First, the obstacles
come from the up-to-dateness of architecture documentation and
specifications. P4a (project manager, architect) explained, “develop-
ers tend to forget updating architecture documentation when evolving
software architectures because of deadline pressures” The obsolete
architecture documentation and specifications are unreliable for au-
tomated architecture conformance checking. Second, no traceability
links between artifacts exist to support locating the artifacts that
contribute to the resulting architectural inconsistency. For instance,
P3b (architect) and P3g (project manager, architect) illustrated, “no
standard process or tool support to build trace links between design
decisions and their implementation”

Recommendations. Knowledge vaporization could cause incon-
sistency between the intended architecture and implemented sys-
tem (3&). Some participants attribute knowledge vaporization to
high developer turnover in software development projects (P3e,
P4a-b, P6b, P12a, P13a, P19a). Developer turnover aggravates ar-
chitecture divergence by losing knowledge about project contexts
including system requirements and architectural decisions [86]. A
poor understanding of project contexts also hinders knowledge
transfer among team members.

6.2 Continuous Architecture Monitoring

Limited tool support to continuously monitor the health sta-
tus of software architectures (£). Architecture monitoring aims
to quantify the health status of software systems in a continuous
way, and evaluate whether the symptoms of architecture problems
crept into a system [63]. Despite the common awareness of the
importance of architecture monitoring among our participants,
few organizations employ specific automated tools for architecture
monitoring in practice. As mentioned by the participants, without
continuous architecture monitoring, teams would discover archi-
tecture problems at the late stages of software life cycle (P3a, P12a).
When it comes to building software on top of legacy systems, it
is difficult to make accurate project planning due to long-lived
architecture problems in the legacy systems, as expressed by P3b
(architect): “the presence of weird dependencies and calls in the legacy
system makes it a headache to build the new system on top of it. This
adds a bunch of risks when trying to make plans.”
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Pinpointing architecture problems requires a system-wide
perspective (f). Pinpointing architecture problems with quantita-
tive measures of architecture monitoring is difficult, as frequently
mentioned in our interviews (P2a, P3a, P4c-d, P7a, P11a, P14a, P19b).
As P2a (developer) illustrated, “the root causes of performance degra-
dation in architecture monitoring could arise from architecture prob-
lems, code issues, or both ... it is difficult to accurately pinpoint architec-
ture problems that cause the performance degradation.” Pinpointing
the root causes requires an overall perspective of the entire software
system, yet individual developers tend to focus on the code of mod-
ules under development in the phase of software construction, thus
lacking such perspective (P3a). The literature also discussed that the
separation between interface and implementation in component-
based software, along with the hiding of the implementation from
the component client, could introduce problems that are difficult to
pinpoint when their effects cross component boundaries [104].
Maintenance of monitoring tools requires ongoing effort (3&).
The maintenance of monitoring tools is another common challenge
mentioned by participants. In some organizations, automated test-
ing frameworks are deployed to quantitatively monitor the perfor-
mance of software systems, but cannot automatically adapt to the
evolution of systems. The tools require significant effort and cost
for their maintenance for expanding the scope of measured quality
attributes and evolving thresholds of measurements (P3f, P4c, P5a,
P12a). For example, P3f (developer) shared, “someone griped about
the hassle of calibrating the quantitative measures as the system
evolves.”

Recommendations. Our observations suggest that the use of au-
tomated testing frameworks appears to be a practical way to con-
tinuously monitor architecture quality in terms of system perfor-
mance (f). As our participants reported, some organizations use
unit testing, stress testing, and performance testing frameworks,
to continuously monitor the quality of software systems (P2a, P3a,
P3c, P3e-f, P4b-d, P5a, P7a, P11a, P12a, P14a, P19b). The perfor-
mance metrics generated by automated testing frameworks tend to
serve as an indicator of architecture problems, e.g., performance
degradation.

Participants raised several expectations for building tools to sup-
port continuous architecture monitoring (%#): (1) integrating a vast
variety of metrics for comprehensively evaluating software archi-
tectures, especially in terms of the quality attributes of software
systems (P2a, P4a); (2) deriving the metrics from the software ar-
chitecture experiences in practice, given architecture design is a
human- and knowledge-intensive process (P3e-f); (3) backing up
empirically based metrics with theoretical support (P1a); and (4)
visualizing metrics to facilitate diagnose of potential architecture
problems (P3b). In addition, it seems important to budget for the
maintenance of architecture monitoring tools, or even a dedicated
maintenance team ().

Involving architects is important when pinpointing architecture
problems in continuous architecture monitoring (%&). In the pro-
cess of architecture monitoring, participants suggested involving
architects to analyze potential problems indicated by monitoring
tools, especially the potential problems in the core components of
a software system (P2a, P3a, P3e). Conversely, developers are sug-
gested to be actively involved (P3f), by providing explanations or
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rationale behind implementation decisions that violate the criteria
for metrics as specified in monitoring tools.

6.3 Construction Quality

Technical debts are introduced to software projects (38, ).
Participants regard technical debts as a common cause of archi-
tecture erosion. Technical debt is a metaphor reflecting technical
compromises that yield short-term benefits but hurt the long-term
success of software systems [95]. Participants reported a variety
of technical debts in the course of software construction, includ-
ing workarounds, shortcuts and sub-optimal operations (P2a, P3b,
P3g, P4a-c, P5a, P6a-b, P7a, P11a, P12a, P13a, P14a, P15a). The
workarounds, shortcuts and sub-optimal operations tend to change
architecturally relevant elements, such as classes, components, and
modules, introduce undesired dependencies among these elements,
and further break architectural integrity, which is observed in pre-
vious work (e.g., [14]). Participants frequently reported that prag-
matism, prioritization and ignorance may contribute to the intro-
duction of technical debts. An example of pragmatism, creating a
minimum viable product in a short amount of time, is noted in prior
research [44, 95], which is also recounted by some participants
(P3b, P3g, P5a, P6a). The implementation of critical functions is
generally prioritized above architecture quality due to the fast pace
and time pressure in software development (P2a, P4a-b). Ignorance
refers to the inability of individual developers to construct high-
quality software systems due to the lack of adequate knowledge on
writing clean code, the applied technologies and business domains
(P3d), which is also highlighted in a prior study [45]. P3d (archi-
tect) illustrated, “without a deep understanding of a programming
language or technology, developers tend to misuse the features of the
language or technology when performing specific programming tasks
... unintentionally incur technical debt”

A few participants mentioned some examples of technical debts
relating to design activities (P2a, P3b), including upfront detailed
design of modules with an under-focus on quality attributes of
software systems, such as maintainability and extensibility, and
sub-optimal upfront solutions in software architectures.

Lack of tool support for detecting architectural smells (£5).
Most participants notice the occurrence of architectural smells in
their software systems, but lack tool support for detecting archi-
tectural smells (P2a, P3a-g, P4a-d, P6a-b, P11a, P12a, P13a, P15a).
Architectural smells indicate the structural problems in the com-
ponents and their interactions with other components of software
systems that are caused by architecture antipatterns, misuse or vio-
lation of architecture styles, and violation of design principles [68].

Dependency related architectural smells are the most frequently
mentioned architectural smells in our interviews (P3a-b, P3d, P3f-g,
P4a, P4c-d, P11a, P19b), including cyclic, undesired and unstable
dependencies [32]. Some participants gave examples of cyclic de-
pendency smells (P3b, P3d, P3f, P4b), as shared by P3b (architect)
“[cyclic dependency smells] happen when architecture components,
such as modules or subsystems, depend on each other in some way,
directly or indirectly” The subsystems and microservices involved
in a dependency cycle tend to be impractical or even impossible
to separately release, deploy and maintain [5]. The undesired de-
pendency occurs when an architecture component depends on an
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excess number of other components (P3d), or the dependency intro-
duces violations of design principles, e.g., top-down dependencies
in layered architectures (P3g). In terms of unstable dependency, P3g
(project manager, architect) mentioned that “some modules depends
on other modules that are less stable than itself ... [because of the
dependencies] the more stable modules tend to change frequently with
the less stable ones”.

Modularity violation architectural smells are also frequently
discussed in our interviews (P2a, P3a-b, P3d-g, P6a, P11a, P19b).
Participants reported that software systems become increasingly
complex as the development proceeds, with gradually losing cohe-
sion in architectural components, thus deteriorating the modularity
of the systems. For example, some participants observed god com-
ponents as an architectural smell (P2a, P3b, P3d-f) [5], as expressed
by P3b (architect): “some components have taken on way too many
responsibilities and completely disregarded the principle of separa-
tion of concerns.” The presence of modularity related architectural
smells may imply the sub-optional decisions for decomposition and
modularization in the design phase (P2a, P3a, P3d, P3f-g, P6a).
Unawareness of correlation between code smells and archi-
tecture problems(%&). Most organizations use a variety of code
analysis tools for code smell detection, yet participants do not
understand whether relationships exist between code smells and ar-
chitecture problems. Specifically, organizations apply homegrown,
open-source, or commercial tools for automated detection of code
smells, including duplicated code (P3c, P3f, P11a, P12a, P17a), cyclo-
matic complexity (P3b), bad naming (P2a, P3b-d, P3f, P4b), and large
class (P2a, P3b, P3e-f). For example, P3c (developer lead, testing)
shared, “we’ve got tools to help us catch duplicate code and other code
smells, but it’s not clear how the results actually help us identify ar-
chitecture problems.” Previous studies indicate that certain patterns
of co-occurrence of code smells tend to be effective indicators of
architectural erosion [9, 34, 51, 57]. Several code smell detection
techniques look at the correlation between code smells and archi-
tectural smells for locating architecture problems (e.g., [46]). Some
code smell detection tools also employ code smell metrics that are
relevant to the identification of architectural smells [46, 56].
Recommendations. Investing effort and time in addressing tech-
nical debts is important (38, #). Some participants recommended
employing commit-level refactoring to gradually reduce technical
debts that contribute to architecture problems (P4a, P5a). A few par-
ticipants suggested incremental benefit analysis for code changes
relating to technical debts, which may encourage developers to
prioritize development tasks that address technical debts.

It is important to automate the detection of architectural smells
to facilitate the enforcement of architectural constraints in the con-
struction phase (%%, f#)). Most participants emphasized that the
automated detection of architectural smells, as a proactive preven-
tion strategy of architecture erosion, can lower the cost of future
maintenance for software systems (P2a, P3a-g, P4a-b, P6a). some
participants recommended integrating architectural smell detection
into the code review process, and involving architects to review
code commits that incur architectural smells; developers are al-
lowed to explain their code that incurs architectural smells (P3b).
To increase the usability of such tools, participants recommend
highlighting affected code by architectural smells and providing
actionable mitigation strategies (P3g).



Software Architecture in Practice: Challenges and Opportunities

Detecting organizational-wide dependency related architectural
smells requires the collaboration of multiple project teams (3, £8).
The detection of dependency related architectural smells requires
the construction of dependency graphs between architectural com-
ponents [5]. In some organizations, the architectural components
are developed and maintained by multiple project teams, as some
participants mentioned (P3a, P4a). Thus, it is important to coor-
dinate multiple project teams for the construction of dependency
graphs.

7 SOFTWARE MAINTENANCE

Once a software system is delivered and in operation, defects are
uncovered, operating environments change, and new requirements
surface, as the system evolves. Software maintenance aims to mod-
ify the software system and ensure that the system continues to
satisfy requirements while preserving its integrity.

7.1 Architecture Erosion

Software architecture may exhibit an eroding tendency when changes
are accumulated in a software system. As the system evolves, the
accumulation of such problems can cause the implemented archi-
tecture to deviate away from the intended architecture. The phe-
nomenon of divergence between the intended and implemented
architectures is regarded as architecture erosion [47].

Lack of tool support to explicitly capture and aggregate symp-
toms of architecture erosion (£). Architecture erosion tends to
affect the quality and evolution of software systems, manifesting
various symptoms as mentioned in our interviews and the litera-
ture [47]. Nonetheless, automated tools are rarely used by practi-
tioners in most organizations to explicitly capture and aggregate
architecture erosion symptoms in terms of quality attributes as well
as maintenance and evolution activities.

Most participants have perceived architecture erosion from the
quality perspective, including performance degradation, frequent
system failures, and high bug rate. In contrast, a few participants
pointed out that software systems with eroded architectures might
have a good runtime performance because “[maintenance] teams
only monitor limited metrics of runtime performance of key business
requirements” (P4a; project manager, architect).

Some participants have perceived architecture erosion from the
perspective of maintenance and evolution activities, including diffi-
culty in integrating new requirements into software systems, and
locating and fixing bugs (P1a, P2a, P3a, P3b, P3f, P4a, P6a, P11a, P13a,
P17a). The difficulty in such activities manifests itself in a variety of
ways, e.g., increased cost, complex implementation, and highly scat-
tered code changes. For instance, P6a (developer) illustrated, “[when
a system suffers from architecture problems], integrating requirements
tends to cost more time and effort than expected based on experience.
Integrating a new requirement in an eroded architecture tends to
be extremely complex, even for a simple business requirement (P1a,
P3a-b, P3f). P4a (project manager, architect) gave an example of
locating bugs in an eroded system with microservices architecture,
“a bug could arise from the code that spans across multiple microser-
vices, making it hard to locate” Moreover, bug fixing in an eroded
architecture tends to involve highly scattered code changes, which
affects an excessive number of files. P3f (developer) identified the
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risks of highly scattered code changes, “[scattered code changes] are
prone to bugs and failures in the future”

Obsolete documentation and increasing complexity of soft-
ware systems accelerate architecture erosion (], %&). Obsolete
documentation and increasing complexity of software are expressed
as the top reasons that cause architecture erosion in our interviews
(P1a, P3b, P3f, P4a-b), which have been also raised in the litera-
ture [24, 37, 56, 61]. Sometimes, practitioners implemented new
requirements without updating the design documentation due to
deadline pressure (P4b). Participants also attribute architecture
erosion to the increasing complexity of architecture as a system
evolves. Consequently, increasing complexity of software systems
tends to reduce the understandability of architectures, and fur-
ther deteriorates the architectures by sub-optimal implementations
when changes occur [24], making the architecture “cumbersome
(heavy), complicated and fragmented” (P1a, P3c, P3e). For instance,
P3d (architect) explained, “it is impossible to integrate new require-
ments into a software system without degrading the quality of its
architecture”

Recommendations. A few participants suggested building a dash-
board to visualize architecture erosion symptoms, which integrates
data from multiple sources, e.g., the number of bugs from issue
tracking systems, runtime logs from the execution environment,
and performance metrics from monitoring tools (P1a; Og).

7.2 Architecture Refactoring

Architecture refactoring [36], also known as large-scale refactoring,
involves structural and broad changes at an architectural scale to
maintain the structural quality of an evolving software system, and
facilitate its success to facilitate the integration of new features.
No agreement on the value of architecture refactoring (3&).
Practitioners in organizations cannot reach an agreement on pri-
oritizing architecture refactoring tasks over development tasks
for delivering business products (P2a, P3a, P3e-f, P4a, P6a, P11a,
P13a). Despite the benefits of architectural refactoring, prior stud-
ies [28, 43] also reported that developers perceive the structural
changes at architectural scale as costly, complicated, and risky, and
failing to implement such changes incurs significant consequences.
The value of continuous maintenance activities relating to software
architectures tends to be underestimated, because the return on
investment is usually unclear (P6a). As P2a (developer) explained,
“given the potentially high anticipated cost of architecture refactoring,
the senior management level would like to see clear quantifiable value
[from architecture refactoring] for the organization” Architecture
refactoring is primarily business driven, including requirements for
significant performance upgradation and delivery of new features
that are not supported by existing architecture (P1a, P2a, P3g, P4a,
P5a, P6a). In addition, technical reasons for architecture refactoring
are also mentioned by some of the participants (P1a, P4b, P5a, P6a),
including migration to new technologies and modernization.
Inadequate tool support for impact analysis of architectural
changes (%). Participants perceive impact analysis as a challeng-
ing activity when it comes to architecture refactoring. Impact anal-
ysis for architecture refactoring requires a conceptual grasp of
the overall code structure, as well as a deep understanding of de-
sign decisions of a software system, as discussed in the literature
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(e.g., [36]). Pla (architect) emphasized that “impact analysis of ar-
chitecture refactoring becomes even challenging for an aging system
due to its increasing complexity and staff turnover, because no one in
the team could be capable of performing accurate impact analysis ”
Organizations rarely provide tool support for impact analysis
of architecture refactoring due to limited traceability information
between architecture, design and implementation artifacts. In ad-
dition, as a software system evolves over time, the traceability
information becomes obsolete due to the separate evolution of its
architecture and source code (P3b, P3e-g, P4a, P6a) (Section 6.1;
also observed in previous studies, e.g., [40]).
Inadequate tool support for module- and system-level refac-
toring (%#). In practice, participants reported that their teams per-
form software refactoring of various granularities at different fre-
quencies, local refactoring occasionally (p3a, P3e-f, P4a-b, P5a, P6a),
module-level refactoring on a monthly basis (P1a, P3a, P3f, P4a,
P5a), and system-level on a yearly basis (P1a, P3e, P11a). Most orga-
nizations integrate automated tools into their software engineering
process to support local refactoring, but do not provide tool sup-
port for module- and system-level refactoring. Practitioners tend
to manually perform module- and system-level refactoring, with
limited support from automated testing frameworks. P3a compared
automated testing frameworks to “safety net” of a software system,
which validates various aspects of artifacts under refactoring, e.g.,
functionality, performance, and user experience. Prior studies also
reported that software architects and developers primarily rely on
manual efforts for large-scale refactoring activities, with minor
support from disjoint tools [36, 69, 99].
Recommendations. It is important to cultivate a software engi-
neering culture in which the whole organization shares a common
commitment to high-quality software architecture (3&). Senior man-
agement and practitioners with different roles need to understand
the implications of software architecture practice and their stakes
in the system (P3a, P3e-f, P13a). Despite the importance of impact
analysis in architecture refactoring there is little tool support due to
limited traceability information (%%, [&). Impact analysis supports
the identification of areas affected by possible changes (P3a, P3e,
P4a, P5a), and the estimation of resources needed to accomplish
the refactoring (P1a). In practice, some organizations encourage
practitioners manually build traceability links by including snip-
pets of design documentation or its link in commit description
(P2a), Javadoc comments (P4b), or code review comments (P6a).
The strategy enables the capturing of traceability links but requires
significant maintenance efforts as architecture and source code
evolves. A few organizations use a DevOps dashboard to build
traceability links between user stories, design artifacts, and source
code. It seems beneficial to adopt a more formal process for building
traceability across design and implementation artifacts ().

8 DISCUSSION

In the interviews, we observed that large-scale organizations tend to
adopt better software architecture practices as compared to smaller
organizations. While most organizations struggle to establish ef-
fective processes and tooling for achieving high-quality software
architectures, smaller organizations struggle more, and have lim-
ited advice to draw from for improvement. Apart from the size of
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organizations, our findings indicate that architectural styles have a
notable influence on software architecture practices, specifically in
terms of documentation and the application of design principles.
Interface specifications enable communication between subsystems
in layered architectures, but tend to be limited at the microservice
level in microservices architectures (Section 5.1). Layered architec-
tures prioritize vertical decomposition for hardware independence,
whereas microservice architectures emphasize horizontal decom-
position based on business requirements (Section 5.2). In addition,
participants highlighted the challenge of locating bugs in eroded
systems with microservices architectures, as bugs can arise from
code spanning across multiple microservices, posing difficulties in
identification (Section 7.1).

We observed that architects (17 participants) raised more chal-
lenges compared to non-architects (15 participants), with a me-
dian of 10 vs. 7 challenges. Similarly, participants with 10 or more
years of experience (14 participants) raised more challenges than
those with less than 10 years of experience (18 participants), with
a median of 10 vs. 7 challenges. Regarding the product domains,
participants from PaaS (1 participant), communications (2 partici-
pants), and intelligent device (4 participants) domains identified the
highest number of challenges, with median values of 17, 12, and 12
challenges mentioned in the interviews, respectively.

Supplement F presents a summary of the challenges, along with
the recommendations identified through our interviews. Most or-
ganizations face common challenges in performing software archi-
tecture activities, in terms of four aspects: (1) collaboration and
management support (3&), (2) architecture knowledge management
(B4), (3) adoption, development and maintenance of tools (£), and
(4) process for architecture design and evolution (f). Beyond the
specific challenges discussed throughout this paper, we observe
four broad themes that would benefit from more attention both in
practice and future research:

%8 Management: It is important for the strategic management
level and practitioners in an organization to share a mindset that
high-quality software architecture requires a continuous and sig-
nificant investment of time and resources throughout the software
life cycle, and benefits all stakeholders in software development
and maintenance. The architects from different projects or business
units can work in a cross-functional team, in which they collabo-
rate in architecture evaluation and review, collect feedback from
developers across projects to analyze architecture problems (e.g.,
architecture inconsistency and architectural smells), and capture
emerging aspects of software architecture as systems evolve.

Bi Documentation: Organizations use a variety of tools to cap-
ture and share architecture documentation, yet practitioners ex-
press the need for better modeling tools, versioning mechanisms,
and lightweight support for traceability in practice (Section 5.1).
Despite abundant research on architecture knowledge manage-
ment [16], little is used in practice to ensure the completeness, up-
to-dateness, and traceability of architecture documentation. Thus,
future research could put effort into designing a unified engineering
tool for architecture knowledge management within an organiza-
tion with support for sophisticated reasoning as well as evolution
and runtime decision-making.
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£ Tooling: Practitioners struggled with inadequate use or lack
of automation and tool support for architecture conformance check-
ing (Section 6.1), continuous monitoring (Section 6.2), architectural
smell detection (Section 6.3), and architecture refactoring (Section
7.2). The development of such tools is a highly sophisticated and
time-consuming process involving interdisciplinary expertise in
both technical and business aspects of software systems. Some
participants recommend building a dedicated team for tool develop-
ment and maintenance, to alleviate additional burdens for develop-
ment teams. Traceability links between various software artifacts
play a fundamental role in such tools, but require manual mainte-
nance in practice which can be time consuming and error prone.
Recent studies on automatic traceability recovery [4] may provide
support to the maintenance of traceability links. Future research
could investigate the applicability of such traceability recovery
techniques in practice.

B8 Process: In practice, architects tend to base the reasoning
process of design decisions on their own experiences and expertise.
Even though some organizations encourage the practice of includ-
ing design decisions and rationale in architecture documentation,
few provide guidance for representing design decisions and ratio-
nale to support the consumption of such architecture knowledge.
We have seen a number of meta-models that aim at representing
design decisions and rationale [50, 94]. It can be beneficial to inte-
grate the use of meta-models in the decision-making process for
architecture design.

9 THREATS TO VALIDITY

Our study exhibits typical threats for qualitative research. Gener-
alizations beyond the sampled participant distribution should be
made with care.

Another threat could be the representativeness of our study de-
mographics for the software industry in general, as the participants
have been sampled through our personal networks. In several orga-
nizations, we only interviewed a single person, possibly giving us a
one-sided perspective. To mitigate this threat, we applied maximum
variation sampling method to cover practitioners with varying lev-
els of experience and diverse job roles, and from organizations of
different sizes, product domains, and geographical regions. The
purposive sampling and constant comparisons in data analysis lead
to data saturation being achieved with a relatively small sample
size of 32 interview participants.

The diverse range of organizations and experience of participants
presented an opportunity to triangulate the overall dimensions
of the broad topic of software architecture in practice. Despite
the specialized experience within different organizations among
various participants, the participants shared significant similarities
in the challenges they encounter as evidenced in the follow-up
validity check.

10 CONCLUSION AND FUTURE WORK

This work followed a qualitative research strategy through inter-
views with 32 participants from 21 organizations to explore how
practitioners perform software architecture related activities, as
well as what challenges they face. We observed significant varia-
tions among organizations in terms of their strategies, processes,
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and tools related to software architecture. Yet, we identified com-
mon challenges in performing software architecture activities, in
terms of four aspects: (1) collaboration and management support,
(2) architecture knowledge management, (3) adoption, development
and maintenance of tools, and (4) process for architecture design
and evolution. Future research could put efforts into quantitatively
exploring how cultural, product, and company characteristics influ-
ence the software architecture practices and challenges, and further
designing strategies to attain high-quality software architectures
throughout software development and maintenance.

REFERENCES

[1] E. Aghajani, C. Nagy, O. L. Vega-Marquez, M. Linares-Vasquez, L. Moreno, G.
Bavota, and M. Lanza. 2019. Software documentation issues unveiled. In 2019
IEEE/ACM 41st Int’l Conf. on Software Engineering (ICSE). 1199-1210.

[2] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. 2012. Soft-
ware architecture optimization methods: A systematic literature review. [EEE
Transactions on Software Engineering 39, 5 (2012), 658-683.

[3] D. Arcelli, V. Cortellessa, A. Filieri, and A. Leva. 2015. Control theory for model-
based performance-driven software adaptation. In Proc. of the 11th Int’l ACM
SIGSOFT Conf. on Quality of Software Architectures. 11-20.

[4] T. W. W. Aung, H. Huo, and Y. Sui. 2020. A literature review of automatic
traceability links recovery for software change impact analysis. In Proc. of the
28th Int’l Conf. on Program Comprehension. 14-24.

[5] U.Azadi,F. A. Fontana, and D. Taibi. 2019. Architectural smells detected by tools:
a catalogue proposal. In 2019 IEEE/ACM Int’l Conf. on Technical Debt (TechDebt).
88-97.

[6] M. A.Babar and L. Gorton. 2007. A tool for managing software architecture
knowledge. In Second Workshop on Sharing and Reusing Architectural Knowledge-
Architecture, Rationale, and Design Intent (SHARK/ADI'07: ICSE Workshops 2007).
11-11.

[7] M. A. Babar and 1. Gorton. 2009. Software architecture review: The state of
practice. Computer 42, 7 (2009), 26-32.

[8] B.Baudry, M. Monperrus, C. Mony, F. Chauvel, F. Fleurey, and S. Clarke. 2014.
Diversify: ecology-inspired software evolution for diversity emergence. In 2014
Software Evolution Week-IEEE Conf. on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). 395-398.

[9] L M. Bertran. 2011. Detecting architecturally-relevant code smells in evolving
software systems. In Proc. of the 33rd Int’l Conf. on Software Engineering. 1090
1093.

[10] G.M.Bonnema. 2014. Communication in multidisciplinary systems architecting.
Procedia CIRP 21 (2014), 27-33.

[11] K. Berte, S.R. Ludvigsen, and A. I. Merch. 2012. The role of social interaction in
software effort estimation: Unpacking the “magic step” between reasoning and
decision-making. Information and Software Technology 54, 9 (2012), 985-996.

[12] J. Bosch. 2004. Software architecture: The next step. In European Workshop on
Software Architecture. 194-199.

[13] E. Bouwers and A. Van Deursen. 2010. A lightweight sanity check for imple-
mented architectures. IEEE software 27, 4 (2010), 44-50.

[14] J. Brunet, R. A. Bittencourt, D. Serey, and J. Figueiredo. 2012. On the evolu-
tionary nature of architectural violations. In 2012 19th Working Conf. on reverse
engineering. 257-266.

[15] Y. Cai, L. Xiao, R. Kazman, R. Mo, and Q. Feng. 2018. Design rule spaces: A new

model for representing and analyzing software architecture. IEEE Transactions

on Software Engineering 45, 7 (2018), 657-682.

R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar. 2016. 10 years of

software architecture knowledge management: Practice and future. Journal of

Systems and Software 116 (2016), 191-205.

[17] A. Caracciolo, M. F. Lungu, and O. Nierstrasz. 2014. How do software archi-
tects specify and validate quality requirements?. In European Conf. on Software
Architecture. 374-389.

[18] R. Chen, S. Li, and Z. Li. 2017. From monolith to microservices: A dataflow-
driven approach. In 2017 24th Asia-Pacific Software Engineering Conf. (APSEC).
466-475.

[19] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R.
Nord, and J. Stafford. 2010. Documenting Software Architectures: Views and
Beyond. Pearson Education.

[20] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford. 2003. Document-
ing software architectures: views and beyond. In 25th Int’l Conf. on Software
Engineering, 2003. Proc.. 740-741.

[21] J.F. Cui and H. S. Chae. 2011. Applying agglomerative hierarchical clustering
algorithms to component identification for legacy systems. Information and
Software technology 53, 6 (2011), 601-614.

[16



ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

[22]

[23

(24]

)
=)

[26

[27]

(28]

[29

(31

[32

[33

(34]

™
&

[37

[38

[39

[40]

[41]

[42]

[43]

[44

(45]

[46]

(47]

S. Dasanayake, S. Aaramaa, J. Markkula, and M. Oivo. 2019. Impact of require-
ments volatility on software architecture: How do software teams keep up with
ever-changing requirements? Journal of software: evolution and process 31, 6
(2019), €2160.

R. C. De Boer, R. Farenhorst, P. Lago, H. Van Vliet, V. Clerc, and A. Jansen.
2007. Architectural knowledge: Getting to the core. In Software Architectures,
Components, and Applications: Third Int’l Conf. on Quality of Software Architec-
tures, QoSA 2007, Medford, MA, USA, July 11-23, 2007, Revised Selected Papers 3.
197-214.

L. De Silva and D. Balasubramaniam. 2012. Controlling software architecture
erosion: A survey. Journal of Systems and Software 85, 1 (2012), 132-151.

W. Ding, P. Liang, A. Tang, and H. Van Vliet. 2014. Knowledge-based approaches
in software documentation: A systematic literature review. Information and
Software Technology 56, 6 (2014), 545-567.

M. L. Drury-Grogan, K. Conboy, and T. Acton. 2017. Examining decision char-
acteristics & challenges for agile software development. Journal of Systems and
Software 131 (2017), 248-265.

A. H. Dutoit, J. Johnstone, and B. Bruegge. 2001. Knowledge scouts: Reducing
communication barriers in a distributed software development project. In Proc.
Eighth Asia-Pacific Software Engineering Conf. 427-430.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton. 2015. Measure it?
manage it? ignore it? software practitioners and technical debt. In Proc. of the
10th Joint Meeting on Foundations of Software Engineering. 50-60.

G. Fischer and J. Otswald. 2001. Knowledge management: problems, promises,
realities, and challenges. IEEE Intelligent systems 16, 1 (2001), 60-72.

J. Garcia, L. Ivkovic, and N. Medvidovic. 2013. A comparative analysis of soft-
ware architecture recovery techniques. In 2013 28th IEEE/ACM Int’l Conf. on
Automated Software Engineering (ASE). 486—496.

P. Gaubatz, I Lytra, and U. Zdun. 2015. Automatic enforcement of constraints
in real-time collaborative architectural decision making. Journal of Systems and
Software 103 (2015), 128-149.

T. Greifenberg, K. Miiller, and B. Rumpe. 2015. Architectural Consistency
Checking in Plugin-Based Software Systems. In Proc. of the 2015 European Conf.
on Software Architecture Workshops. 1-7.

L. Groher and R. Weinreich. 2015. A study on architectural decision-making in
context. In 2015 12th Working IEEE/IFIP Conf. on Software Architecture. 11-20.
E. Guimaries, A. Garcia, and Y. Cai. 2015. Architecture-sensitive heuristics for
prioritizing critical code anomalies. In Proc. of the 14th Int’l Conf. on Modularity.
68-80.

S. Hassan and R. Bahsoon. 2016. Microservices and their design trade-offs: A
self-adaptive roadmap. In 2016 IEEE Int’l Conf. on Services Computing (SCC).
813-818.

J. Ivers,R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini. 2022.
Industry Experiences with Large-Scale Refactoring. In Proc. of the 30th ACM
Joint European Software Engineering Conf. and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2022). 1544-1554.

F. Jaafar, S. Hassaine, Y.-G. Guéhéneuc, S. Hamel, and B. Adams. 2013. On
the relationship between program evolution and fault-proneness: An empirical
study. In 2013 17th European Conf. on Software Maintenance and Reengineering.
15-24.

A. Jansen, P. Avgeriou, and J. S. van der Ven. 2009. Enriching software architec-
ture documentation. Journal of Systems and Software 82, 8 (2009), 1232-1248.
A.Jansen and J. Bosch. 2005. Software architecture as a set of architectural design
decisions. In 5th Working IEEE/IFIP Conf. on Software Architecture (WICSA’05).
109-120.

M. A. Javed and U. Zdun. 2014. A systematic literature review of traceability
approaches between software architecture and source code. In Proc. of the 18th
Int’l Conf. on Evaluation and Assessment in Software Engineering. 1-10.

R. Kazman, M. Gagliardi, and W. Wood. 2012. Scaling up software architecture
analysis. Journal of Systems and Software 85, 7 (2012), 1511-1519.

R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto. 2015. Evalu-
ating the effects of architectural documentation: A case study of a large scale
open source project. IEEE Transactions on Software Engineering 42, 3 (2015),
220-260.

M. Kim, T. Zimmermann, and N. Nagappan. 2012. A field study of refactoring
challenges and benefits. In Proc. of the ACM SIGSOFT 20th Int’l Symposium on
the Foundations of Software Engineering. 1-11.

E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek, R. Prikladnicki, N.
Tripathi, and L. B. Pompermaier. 2018. Exploration of technical debt in start-ups.
In Proc. of the 40th Int’l Conf. on Software Engineering: Software Engineering in
Practice. 75-84.

P. Kruchten, R. Nord, and I. Ozkaya. 2019. Managing technical debt: Reducing
friction in software development. Addison-Wesley Professional.

J. Lenhard, M. M. Hassan, M. Blom, and S. Herold. 2017. Are code smell detec-
tion tools suitable for detecting architecture degradation?. In Proc. of the 11th
European Conf. on Software Architecture: Companion Proc. 138-144.

R. Li, P. Liang, M. Soliman, and P. Avgeriou. 2022. Understanding software
architecture erosion: A systematic mapping study. Journal of Software: Evolution

[48]

[49]

[50]

[51

[52
[53

[54

[55]

[56

[57]

[58]

[59]

[60

[61]

[62]

[63]

[64

[65]

[66]

[67]

[68]

[69

[70

[71

[72]

[73]

Zhiyuan Wan, Yun Zhang, Xin Xia, Yi Jiang, and David Lo

and Process 34, 3 (2022), e2423.

S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan. 2019. A
dataflow-driven approach to identifying microservices from monolithic applica-
tions. Journal of Systems and Software 157 (2019), 110380.

X. Li, P. Liang, and Z. Li. 2020. Automatic identification of decisions from the
hibernate developer mailing list. In Proc. of the Evaluation and Assessment in
Software Engineering. 51-60.

Z.1i, P. Liang, and P. Avgeriou. 2013. Application of knowledge-based ap-
proaches in software architecture: A systematic mapping study. Information
and Software technology 55, 5 (2013), 777-794.

Z.Liand]. Long. 2011. A case study of measuring degeneration of software archi-
tectures from a defect perspective. In 2011 18th Asia-Pacific Software Engineering
Conf. 242-249.

Q.1 P. Ltd. 2023. NVivo qualitative data analysis software.

C.-H. Lung, M. Zaman, and A. Nandi. 2004. Applications of clustering techniques
to software partitioning, recovery and restructuring. Journal of Systems and
Software 73, 2 (2004), 227-244.

T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic, and R.
Kroeger. 2015. Comparing software architecture recovery techniques using
accurate dependencies. In 2015 IEEE/ACM 37th IEEE Int’l Conf. on Software
Engineering, Vol. 2. 69-78.

A. Maccari. 2002. Experiences in assessing product family software architecture
for evolution. In Proc. of the 24th Int’l Conf. on Software Engineering. ICSE 2002.
585-592.

1. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. Von Staa. 2012. On the
relevance of code anomalies for identifying architecture degradation symptoms.
In 2012 16Th european Conf. on software maintenance and reengineering. 277-286.

1. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and A. von Staa. 2012.
Are automatically-detected code anomalies relevant to architectural modularity?
An exploratory analysis of evolving systems. In Proc. of the 11th annual Int’l
Conf. on Aspect-oriented Software Development. 167-178.

N. Medvidovic and R. N. Taylor. 2000. A classification and comparison frame-
work for software architecture description languages. IEEE Transactions on
software engineering 26, 1 (2000), 70-93.

R. Membarth, O. Reiche, F. Hannig, J. Teich, M. K6rner, and W. Eckert. 2015.
Hipa cc: A domain-specific language and compiler for image processing. IEEE
Transactions on Parallel and Distributed Systems 27, 1 (2015), 210-224.

T. Mens, S. Demeyer, O. Barais, A. F. Le Meur, L. Duchien, and J. Lawall. 2008.
Software architecture evolution. Software Evolution (2008), 233-262.

B. Merkle. 2010. Stop the Software Architecture Erosion: Building Better Soft-
ware Systems. In Proc. of the ACM Int’l Conf. Companion on Object Oriented
Programming Systems Languages and Applications Companion. 129-138.

C. Miksovic and O. Zimmermann. 2011. Architecturally significant requirements,
reference architecture, and metamodel for knowledge management in infor-
mation technology services. In 2011 Ninth Working IEEE/IFIP Conf. on Software
Architecture. 270-279.

M. Mirakhorli and J. Cleland-Huang. 2015. Detecting, tracing, and monitoring
architectural tactics in code. IEEE Transactions on Software Engineering 42, 3
(2015), 205-220.

B. S. Mitchell and S. Mancoridis. 2006. On the automatic modularization of soft-
ware systems using the bunch tool. IEEE Transactions on Software Engineering
32, 3 (2006), 193-208.

R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. 2016. Decoupling level: a new
metric for architectural maintenance complexity. In Proc. of the 38th Int’l Conf.
on Software Engineering. 499-510.

N. B. Moe, A. Aurum, and T. Dyba. 2012. Challenges of shared decision-making:
A multiple case study of agile software development. Information and Software
Technology 54, 8 (2012), 853-865.

R. Mohanani, P. Ralph, and B. Shreeve. 2014. Requirements fixation. In Proc. of
the 36th Int’l Conf. on software engineering. 895-906.

H. Mumtaz, P. Singh, and K. Blincoe. 2021. A systematic mapping study on
architectural smells detection. Journal of Systems and Software 173 (2021),
110885.

E. Murphy-Hill, C. Parnin, and A. P. Black. 2011. How we refactor, and how we
know it. IEEE Transactions on Software Engineering 38, 1 (2011), 5-18.

M. Muszynski, S. Lugtigheid, F. Castor, and S. Brinkkemper. 2022. A Study on the
Software Architecture Documentation Practices and Maturity in Open-Source
Software Development. In 2022 IEEE 19th Int’l Conf. on Software Architecture
(ICSA). 47-57.

N. Nahar, S. Zhou, G. Lewis, and C. Kastner. 2022. Collaboration challenges
in building ml-enabled systems: Communication, documentation, engineering,
and process. In Proc. of the 44th Int’l Conf. on Software Engineering. 413-425.

F. G. Olumofin and V. B. Misi¢. 2007. A holistic architecture assessment method
for software product lines. Information and Software Technology 49, 4 (2007),
309-323.

A. Patidar and U. Suman. 2015. A survey on software architecture evaluation
methods. In 2015 2nd Int’l Conf. on Computing for Sustainable Global Development
(INDIACom). 967-972.



Software Architecture in Practice: Challenges and Opportunities

(74]

[75]

[76]

(80]

(81]

(82

"%
&

(84]

(85

(86

(87]

(88

(89

M. Patton. 1999. Enhancing the quality and credibility of qualitative analysis.
Health Services Research 34, 5 Pt 2 (1999), 1189-1208.

M. Perepletchikov, C. Ryan, and K. Frampton. 2007. Cohesion metrics for
predicting maintainability of service-oriented software. In Seventh Int’l Conf. on
Quality Software (QSIC 2007). 328-335.

D. E. Perry and A. L. Wolf. 1992. Foundations for the study of software architec-
ture. ACM SIGSOFT Software engineering notes 17, 4 (1992), 40-52.

R. Plésch, A. Dautovic, and M. Saft. 2014. The value of software documentation
quality. In 2014 14th Int’l Conf. on Quality Software. 333-342.

B. Ramesh and M. Jarke. 2001. Toward reference models for requirements
traceability. IEEE transactions on software engineering 27, 1 (2001), 58-93.

M. Rebougas, R. O. Santos, G. Pinto, and F. Castor. 2017. How does contributors’
involvement influence the build status of an open-source software project?. In
2017 IEEE/ACM 14th Int’l Conf. on Mining Software Repositories (MSR). 475-478.
V. S. Rekhav and H. Muccini. 2014. A study on group decision-making in
software architecture. In 2014 IEEE/IFIP Conf. on Software Architecture. 185-194.
Q. I Sarhan, B. S. Ahmed, M. Bures, and K. Z. Zamli. 2020. Software mod-
ule clustering: An in-depth literature analysis. IEEE Transactions on Software
Engineering 48, 6 (2020), 1905-1928.

M. Schmitt Laser, N. Medvidovic, D. M. Le, and J. Garcia. 2020. ARCADE: an
extensible workbench for architecture recovery, change, and decay evaluation.
In Proc. of the 28th ACM Joint Meeting on European Software Engineering Conf.
and Symposium on the Foundations of Software Engineering. 1546—1550.

B. Selic. 2009. Agile documentation, anyone? IEEE software 26, 6 (2009), 11-12.
M. Shahin, P. Liang, and M. R. Khayyambashi. 2009. Architectural design
decision: Existing models and tools. In 2009 Joint Working IEEE/IFIP Conf. on
Software Architecture & European Conf. on Software Architecture. 293-296.

M. Shaw and P. Clements. 2006. The golden age of software architecture. IEEE
software 23, 2 (2006), 31-39.

A. Strasser, B. Cool, C. Gernert, C. Knieke, M. Koérner, D. Niebuhr, H. Peters, A.
Rausch, O. Brox, S. Jauns-Seyfried, et al. 2014. Mastering Erosion of Software
Architecture in Automotive Software Product Lines. In Int’l Conf. on Current
Trends in Theory and Practice of Informatics. 491-502.

A. Strauss and J. Corbin. 1990. Basics of qualitative research: Grounded theory
procedures and techniques. Sage.

A. Strauss and J. Corbin. 1994. Grounded theory methodology: An overview.
(1994).

H. Suri. 2011. Purposeful sampling in qualitative research synthesis. Qualitative
research journal 11, 2 (2011), 63-75.

M. Szlenk, A. Zalewski, and S. Kijas. 2012. Modelling architectural decisions
under changing requirements. In 2012 Joint Working IEEE/IFIP Conf. on Software

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

Architecture and European Conf. on Software Architecture. 211-214.

A. Tang and M. F. Lau. 2014. Software architecture review by association. Journal
of systems and software 88 (2014), 87-101.

A. Tang, P. Liang, and H. Van Vliet. 2011. Software architecture documentation:
The road ahead. In 2011 Ninth Working IEEE/IFIP Conf. on Software Architecture.
252-255.

R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha. 2015. A recommendation
system for repairing violations detected by static architecture conformance
checking. Software: Practice and Experience 45, 3 (2015), 315-342.

D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema. 2014. Past and future of
software architectural decisions—-A systematic mapping study. Information and
Software Technology 56, 8 (2014), 850-872.

E. Tom, A. Aurum, and R. Vidgen. 2013. An exploration of technical debt. Journal
of Systems and Software 86, 6 (2013), 1498-1516.

S. A. Tonu, A. Ashkan, and L. Tahvildari. 2006. Evaluating Architectural Stability
Using a Metric-Based Approach. In Proc. of the Conf. on Software Maintenance
and Reengineering. 261-270.

[97] J. Tyree and A. Akerman. 2005. Architecture decisions: Demystifying architec-

ture. IEEE software 22, 2 (2005), 19-27.

A. Uchoa, C. Barbosa, D. Coutinho, W. Oizumi, W. K. Assuncao, S. R. Vergilio, J. A.
Pereira, A. Oliveira, and A. Garcia. 2021. Predicting design impactful changes
in modern code review: A large-scale empirical study. In 2021 IEEE/ACM 18th
Int’l Conf. on Mining Software Repositories (MSR). 471-482.

M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson.
2012. Use, disuse, and misuse of automated refactorings. In Proc. of the 34th Int’l
Conf. on Software Engineering. 233-243.

H. Van Vliet and A. Tang. 2016. Decision making in software architecture.
Journal of Systems and Software 117 (2016), 638-644.

O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer. 2011. Software architecture: a
comprehensive framework and guide for practitioners. Springer.

Z. Wen and V. Tzerpos. 2004. An effectiveness measure for software clustering
algorithms. In Proc.. 12th IEEE Int’l Workshop on Program Comprehension, 2004.
194-203.

B. J. Williams and J. C. Carver. 2014. Examination of the software architec-
ture change characterization scheme using three empirical studies. Empirical
Software Engineering 19, 3 (2014), 419-464.

[104] J. Wuttke. 2010. Automatically generated runtime checks for design-level con-

straints. Ph.D. Dissertation. Universita della Svizzera italiana.

[105] J. Zhi, V. Garousi-Yusifoglu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe.

2015. Cost, benefits and quality of software development documentation: A
systematic mapping. Journal of Systems and Software 99 (2015), 175-198.



Supplementary Material

Supplement A: Codebook

1. Software Requirements

» Description and Relation to Software Architecture: Software re-
quirements process is concerned with the elicitation, analysis, spec-
ification, and validation of software requirements as well as the
management of requirements. Architectural design is the point
at which the requirements process overlaps with software design.
Thus, software architecture practice would happen in the software
requirements stage of a waterfall-like process or iteratively in other
process models. Software requirements express the needs and con-
straints placed on a software system that contribute to the solu-
tion of some real-world problem. Some requirements, particularly
certain nonfunctional ones, have a global scope in that their satis-
faction cannot be allocated to a discrete component in a software
system. Hence, a requirement with global scope may strongly affect
the software architecture and the design of many components.

» Challenges (Code, Description and Example):

- Unpredictable requirements: As software systems evolve, the
evolution and changes in software requirements, including new
features and non-functional requirements. Example: “Architects
cannot always foresee future requirements when they design archi-
tecture”.

2. Software Design

» Description and Relation to Software Architecture: During software
design, practitioners produce various models that form a kind of
blueprint of the solution to be implemented. These models can be
analyzed and evaluated to determine whether or not they will fulfill
requirements. Practitioners also examine and evaluate alternative
solutions and tradeoffs. Finally, the resulting models are used to plan
subsequent development activities, such as using them as inputs
and as the starting point of construction and testing. In a waterfall-
like process or iteratively in other process models, software design
consists of two activities that fit between software requirements
and software construction: (1) Software architectural design, some-
times called high-level design, in which top-level structure and
organization of a software system is produced, and (2) software
detailed design, in which each component is specified in sufficient
detail to facilitate its construction.

An architectural style is a specialization of element and relation
types, together with a set of constraints on how they can be used,
thus providing the high-level organization of software systems. A
number of architectural styles have been identified:

- General structures (e.g., layered, pipes and filters, blackboard)

- Distributed systems (e.g., client-server, three-tiers, broker, mi-
croservices)

- Interactive systems (e.g., Model-View-Controller, Presentation-
Abstraction-Control)

- Adaptable systems (e.g., microkernel, reflection)

- Others (e.g., batch, interpreters, process control, rule-based)

2.1 Design Documentation
» Description and Relation to Software Architecture: Different high-
level views of a software design can be described and documented.
A view represents a partial aspect of a software architecture that

shows specific properties of a software system. For instance, the
logical view represents functional requirements, the process view
represents concurrency issues, the physical view represents dis-
tribution issues, and the development view represents how the
design is broken down into implementation elements with explicit
representation of the dependencies among the elements.

» Challenges (Code, Description and Example):

- Completeness: Use of models and tools is inadequate to ensure
the completeness of architecture documentation. Example: “I cannot
find the relevant information in architecture documentation”.

- Up-to-dateness: Architecture documentation becomes obsolete
as software evolves. Example: “Documentation-code inconsistency
sometimes confuses me when I implement new features [for the
system]”.

- Conflict with process: Conflict between documentation and
agile process. Example: “Traditional modeling method like UML
becomes a significant roadblock to fast-paced design in agile devel-
opment”.

- Inadequate tool support: Inadequate tool support for sharing,
version control, and tracing of scattered design documentation.
Example: “Our company uses text processing software to collect
design documentation, and version control systems to keep track
of changes in documents”.

2.2 Design Principles
» Description and Relation to Software Architecture: Software design
principles provide the basis for many different software design
approaches and concepts, including abstraction, coupling and cohe-
sion, decomposition and modularization, encapsulation/ informa-
tion hiding, separation of interface and implementation, sufficiency,
completeness, and primitiveness, and separation of concerns.

» Challenges (Code, Description and Example):

- Software decomposition: Unclear boundaries between architec-
tural elements in software systems. Example: “One cannot elegantly
decompose a software system by simply collecting and listing a
bunch of business scenarios”.

- Interdisciplinary knowledge: Interdisciplinary knowledge is
required to lower coupling and improve cohesion of software. Ex-
ample: “Business requirements change over time in different fre-
quencies ... a component [in a software system] tend to be highly
coupled with others [as the system evolves] if it is responsible for
both frequently and rarely changed requirements”.

2.3 Design Quality Analysis and Evaluation
» Description and Relation to Software Architecture: Various at-
tributes contribute to the quality of a software design, including
quality attributes discernible at runtime (e.g., performance, security,
availability, functionality, usability) and those not discernible at run-
time (e.g., modifiability, portability, reusability, testability). Various
tools and techniques can help in analyzing and evaluating software
design quality, including software design reviews to determine the
quality of design artifacts, static analysis to detect design errors, as
well as simulation and prototyping to evaluate a design. Measures
can be used to assess or to quantitatively estimate various aspects
of a software design, e.g., size, structure, or quality.
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» Challenges (Code, Description and Example):

- Lack of standard process and tool support: Architecture re-
view requires a standard process, active involvement of external
experts, and tool support. Example: “Informal architecture reviews
would take place once every one to two years during software
maintenance, planning for the evolution of software architectures”.

- Experience based: Evaluation and review of architectures heav-
ily rely on practitioners’ experiences and expertise. Example: “Ex-
perts rely on their experience in architecture review and evaluation
process when inspecting the requirements and potential solutions
in architecture documentation”.

- Lack of apply-to-all measures: Effective measurements differ
across software systems. Example: “[Our company] implemented
quantitative measures to evaluate architecture quality, but they are
superficial and lack of theoretical basis”.

3. Software Construction and Testing

» Description and Relation to Software Architecture: Software con-
struction refers to the creation of working software through a com-
bination of coding, verification, unit testing, integration testing,
and debugging; Software testing consists of dynamic verification
of expected behaviors in software systems. The construction and
testing phases use design output. Boundaries between design, con-
struction, and testing would vary depending on the processes used
in software projects.

3.1 Architecture Conformance Checking
» Description and Relation to Software Architecture: Architecture
conformance checking examines whether the implemented archi-
tecture is consistent with the intended architecture, ensuring devel-
opers have followed the architectural edicts set and not eroding the
architecture by breaking down abstractions, bridging layers, and
compromising information hiding.

» Challenges (Code, Description and Example):

- Lack of tool support: Practitioners rely heavily on periodical
manual inspection for architecture conformance. Example: “De-
tailed description [of architecture-level code changes] would save
the time of architects to evaluate whether the code changes conform
with the intended architecture”.

- Obsolete documentation: Obsolete documentation hinders the
automation of architecture conformance checking. Example: “De-
velopers tend to forget to update architecture documentation when
evolving software architectures because of deadline pressures”.

- Lack of traceability: Lack of traceability hinders the automa-
tion of architecture conformance checking. Example: “No standard
process or tool support exists to build trace links between design
decisions and their implementation”.

3.2 Architecture Monitoring
» Description and Relation to Software Architecture: Architecture
monitoring aims at employing means to monitor the health status
of software systems, and evaluate whether architecture erosion
symptoms crept into implemented software architecture.

» Challenges (Code, Description and Example):

- Limited tool support: Limited tool support to continuously
monitor the health status of software architectures. Example: “We
usually identified architecture problems at the late stages of soft-
ware life cycle, with no support from continuous architecture mon-
itoring”.

- System-wide perspective: Pinpointing architecture problems
requires a system-wide perspective. Example: “The root causes of
performance degradation in architecture monitoring could arise
from architecture problems, code issues, or both ... it is difficult to ac-
curately pinpoint architecture problems that cause the performance
degradation”.

- Maintenance effort for tooling: Maintenance of monitoring
tools requires ongoing effort. Example: “We use automated testing
frameworks to quantitatively monitor the performance of software
systems, but [the frameworks] cannot automatically adapt to the
evolution of systems”.

3.3 Construction Quality
» Description and Relation to Software Architecture: Faults can be
introduced during construction and result in serious quality prob-
lems. Numerous techniques exist to ensure the quality of code as
it is constructed, including static analysis (e.g., code smell detec-
tion), unit testing, and integration testing. Technical debt reflects
technical compromises that yield short-term benefits but hurt the
long-term success of software systems. It might give rise to subop-
timal design decisions, and cause architecture erosion with a high
probability. Architectural smells indicate the structural problems
in the components and their interactions with other components
of software systems that are caused by architecture antipatterns,
misuse or violation of architectural styles, and violation of design
principles. Certain patterns of co-occurring code smells tend to be
strong indicators of architecture erosion.

» Challenges (Code, Description and Example):

- Technical debts: Technical debts are introduced to software
projects, which is regarded as a common cause of architecture
erosion. Example: “Without a deep understanding of a programming
language or technology, developers tend to misuse the features of
the language or technology when performing specific programming
tasks ... unintentionally incur technical debt”.

- Lack of tool support: Lack of tool support for detecting archi-
tectural smells. Example: “[Unstable dependency] ... some modules
depend on other modules that are less stable than itself ... [because
of the dependencies] the more stable modules tend to change fre-
quently with the less stable ones”.

- Unawareness of architecture problems: Unawareness of cor-
relation between code smells and architecture problems. Example:
“We use tools for code smell detection, but it is unclear how code
smells relate to architecture problems”.

4. Software Maintenance

» Description and Relation to Software Architecture: Software mainte-
nance sustains the software system from development to operations
throughout its life cycle. Software development efforts result in the
delivery of a software system that satisfies user requirements. Once
a software system is delivered and in operation, defects are uncov-
ered, operating environments change, and new user requirements
surface. Software maintenance aims to modify existing system and
ensure that the system continues to satisfy user requirements while
preserving its integrity. Four categories of maintenance have been
defined: corrective, adaptive, perfective, and preventive mainte-
nance.

4.1 Architecture Erosion
» Description and Relation to Software Architecture: Software ar-
chitecture may exhibit an eroding tendency when changes are
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accumulated in a software system. As the system evolves, the accu-
mulation of such problems can cause the implemented architecture
to deviate away from the intended architecture. The phenomenon
of divergence between the intended and implemented architectures
is regarded as architecture erosion. An eroded architecture can
aggravate the brittleness of the system and decrease architecture
sustainability.

» Challenges (Code, Description and Example):

- Lack of tool support: Lack of tool support to explicitly capture
and aggregate symptoms of architecture erosion. Example: “[Mainte-
nance] teams only monitor limited metrics of runtime performance
of key business requirements”.

- Obsolete documentation: Obsolete documentation accelerates
the erosion of software architectures. Example: “The outdated de-
sign documentation could hinder knowledge transfer, and cause
a poor understanding of project contexts among the members of
development teams”.

- Increasing complexity of software systems: Increasing com-
plexity of software systems accelerates the erosion of software
architectures. Example: “Increasing complexity of software systems
reduces the understandability of architectures, and deteriorates
the architectures by sub-optimal implementations when changes
occur, making the architecture cumbersome, complicated and frag-
mented”.

4.2 Architecture Refactoring
» Description and Relation to Software Architecture: Refactoring is
a reengineering technique that aims at reorganizing a software
system without changing its behavior to improve its structure and
maintainability. Periodic architecture refactoring is required to
maintain the structural quality of a complex and evolving software
system, and for its success to facilitate the integration of new fea-
tures. Other related terms, such as system-wide refactoring is also
used in the literature. Architecture refactoring usually takes a long
time with considerable planning and team coordination involved.
» Challenges (Code, Description and Example):

- Undervalued: No agreement on the value of architecture refac-
toring. Example: “Given the potentially high anticipated cost of
architecture refactoring, the senior management level would like
to see clear quantifiable value [from architecture refactoring] for
the organization”.

- Inadequate tool support for impact analysis: Inadequate tool
support for impact analysis of architectural changes. Example: “Im-
pact analysis of architecture refactoring becomes even challeng-
ing for an aging system due to its increasing complexity and staff
turnover, because no one in the team could be capable of performing
accurate impact analysis”.

- Inadequate tool support for architecture refactoring: Inadequate
tool support for module- and system-level refactoring. Example:
“We use automated testing frameworks as a safety net to validate
various aspects of artifacts under refactoring like functionality,
performance, and user experience”.

Supplement B: Interview Guide

Introduction

o Thanks for taking the time to meet with me today. We are
conducting a study to explore software architecture practice
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in industry. In support of this study, we are conducting a
series of targeted interviews to gather information. During
the interview, I would like to ask you a few questions about
your background, then we will discuss your experience with
respect to software architecture.
e In any data collected, or in reports or papers that are pub-
lished, you will not be identified by name. Please be careful
not to discuss any sensitive information about your com-
pany you work for. If you do mention any, we will do our
best to remove it from our transcripts, but better if you don’t
mention such sensitive information at all.
Before we begin, I would like to notify you that I intend to
record the interview for transcription purposes. Only the
principal investigator will be able to access the recordings.
After the interview is transcribed and identifying informa-
tion is removed from the transcript, the audio recording will
be destroyed.

Interview Questions
[Demographics]

Years of Experience How many years of experience do you
have in total with software development and maintenance?
And how many years with software architecture?

Tenure How many years you have been with your current
company/organization? What is the size and geography of
the company/organization?

Job Responsibility Next, I'm going to name a series of
job responsibilities, and I'd like to tell me where you have
“none”, “some” or “extensive” experience you have for each
job responsibility: [architecture design, detailed design, im-
plementation, management, testing]

Programming Languages What programming languages
do you use in your work? What is the most frequently used?
Major Project Can you tell me about the major project you
worked on at your company? What are your roles in this
project? How long have you been involved in this project?

[Topic-Specific Questions]
Please answer the following questions regarding the major project
you have been involved in.

Architecture Can you describe the architecture of the sys-
tem? What kind of architectural style does the system use?
In your opinion, what do you think high-quality architecture
is?
Design Process Can you describe a bit about how you and
your team design the system?
Design Principles What design principles do you con-
sider when designing the system?
Design Documentation Do you develop design docu-
mentation? What is included in design documentation?
How do you write and maintain design documentation?
Do you maintain versioning?
Design Decisions How do you and your team make de-
sign decisions? Do you record design decisions? Were the
design decisions traceable to the code?
Architecture Review and Evaluation How do you re-
view and evaluate architecture? Who are involved?
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Construction and Testing Process Have you and your
team encountered any architecture issues when implement-
ing and testing the system?
Identification How did you identify such architecture
issues? Any tool support?
Elimination How did you eliminate such architecture
issues? Any tool support?
Root Cause In your opinion, why did such architecture
issues arise?
Maintenance Process Have you and your team encoun-
tered any architecture issues when maintaining the system?
Identification How did you identify such architecture
issues? Any tool support?
Elimination How did you eliminate such architecture
issues? Any tool support?
Root Cause In your opinion, why did such architecture
issues arise?

[Last Thoughts]

Challenges and Solutions Can you think about any other
challenges you faced with respect to software architecture dur-
ing project development and maintenance? What do you think the
potential solutions would be to these challenges?

Supplement C: Interview Participants

Table 1 presents the details of interviewed participants, companies
and products.

Supplement D:  Architectural Styles

Throughout our interviews, we observed that the architectural
styles for software systems to which our participants contribute dif-
fer widely across various application domains. To illustrate the dif-
ferences, we provide simplified descriptions of architectural styles
applied in two application domains in Figure 1. We show the build-
ing blocks and structures of architectural styles, as well as the
responsibility of each building block.

Organization 3 (Figure 1, top) develops embedded software on
various devices for their clients, where participants reported two ar-
chitectural styles applied to their products. The layered architecture
is comprised of four layers: (1) the kernel layer, which implements
application-specific customization of kernel functionality, (2) the
driver layer, which initializes and manages access to the hardware
devices, (3) the framework layer, which creates APIs over native
libraries to simplify access to low-level components, and (4) the
application layer, which delivers application-specific services to the
users.

The hexagonal architecture is an alternative to the layered archi-
tectural style, which organizes the logical view in a way that places
the business logic at the center.As shown in the hexagonal architec-
ture in Figure 1, the business logic is specified in the domain layer
at the core of the architecture. The application layer lies around
the domain layer to isolate it from external factors and accomplish
use scenarios. The framework layer sits outside of the application
layer, which implements services defined by the application layer.

Organization 4 (Figure 1, bottom) develops distributed software
systems to support their business objectives and activities, where
participants reported microservices architectural style is applied

Application

Framework

Domain

Application

Driver

Kernel Framework

@ Layered Architecture @ Hexagonal Architecture

Organization 3: Embedded Software

CROBCEO
e © e

Organization 4: Distributed Software

Figure 1: Architectural styles of two organizations.

to the server side of systems. In microservices architectures, the
server side is decomposed into a set of microservices that com-
municate with each other through lightweight mechanisms, e.g.,
RESTful API or stream-based communications.Each microservice
is implemented and operated as an independent unit, offering ac-
cess to its internal logic and data through a well-defined network
interface.For the client side, some systems can support a variety of
clients including browsers, mobile applications, and desktop appli-
cations; others are middleware, which has no specific client side
and only provides services to other systems or business applica-
tions in the organization. Despite the common use of microservices
architecture on the server side, teams in Organization 4 develop
software systems with different technology stacks.
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Table 1: Details of interviewed participants, companies and products.

Company ID Company Type ParticipantID Participant Role

Product Domain

C1 Mid-size Tech la Architect SaaS
C2 Big Tech 2a Developer Deep Learning
C3 Big Tech 3a Architect Intelligent Device
3b Architect Intelligent Device
3c Developer Lead, Testing Productivity Tool
3d Architect laaS
3e Architect, Developer Lead Communications
3f Developer Communications
3g Project Manager, Architect Intelligent Device
C4 Big Tech 4a Project Manager, Architect E-commerce
4b Architect E-commerce
4c Project Manager, Architect E-commerce
4d Architect, Developer E-commerce
C5 Non IT 5a Architect Finance
Cé Big Tech 6a Developer E-commerce
6b Developer E-commerce
C7 Mid-size Tech 7a Architect, Developer Firmware
C8 Non IT 8a Project Manager Finance
C9 Non IT 9a Developer Health
C10 Startup 10a Project Manager SaaS
C11 Big Tech 11a Project Manager PaaS
C12 Non IT 12a Project Manager Finance
C13 Mid-size Tech 13a Project Manager, Architect Health
C14 Startup 14a Project Manager, Architect Supply Chain
C15 Big Tech 15a Developer Productivity Tool
C16 Non IT 16a Architect Finance
C17 Mid-size Tech 17a Architect Intelligent Device
C18 Startup 18a Project Manager, Developer, Testing ~ Supply Chain
C19 Big Tech 19a Developer E-commerce
19b Developer Social Media
C20 Non IT 20a Architect Automotive and Clean Energy
C21 Mid-size Tech 2la Project Manager Health
Supplement E: Papers for Triangulation 3 Lakshitha De Silva and Dharini Balasubramaniam. Control-
1 Sandun Dasanayake, Sanja Aaramaa, Jouni Markkula, and ling software ar- chitecture erosion: A survey. Journal of
Markku Oivo. Impact of requirements volatility on software Systems and Software, 85(1):13.2_.151’ 20?‘2- )
architecture: How do software teams keep up with ever- 4 Tom Mens, Serge Demeyer, Olivier Barais, Anne Francoise
changing requirements? Journal of software: evolution and Le Meur, Laurence Duchien, and Julia Lawall. Software archi-
process, 31(6):¢2160, 2019. tecture evolution. Software Evolution, pages 233-262, 2008.
2 Marcin Szlenk, Andrzej Zalewski, and Szymon Kijas. Mod- > Ant(?ny Tang, Peng Liang, and Hans Van Vliet. Softvsf'are
elling architectural de- cisions under changing requirements. archlt.ecture documen- tation: The road ahead. In 201.1 Ninth
In 2012 Joint Working IEEE/IFIP Conference on Software Working IEEE/IFIP Conference on Software Architecture,
Architecture and European Conference on Software Archi- pages 252-255. IEEE, 2011.

tecture, pages 211-214. IEEE, 2012.
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The “Observed in Literature” column in Table 2 highlights the
literature that discuss the corresponding challenges.
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Table 2: Summary of challenges with recommendations.

Challenge Description Observed in  Recommendations
Literature
SOFTWARE REQUIREMENTS
Unpredictable evolution and changes of software requirements com-  [1, 3, 10, 11,  f#) Make tradeoffs among multiple factors while being aware of the volatility and unpredictability of requirements.
plicate architecture design (385, ). 23, 30, 31] Bj Use formal architecture documentation to capture design tradeoffs, and establish trace links between require-
ments and design decisions.
£ Establish a standardized process for adapting, refactoring, and retiring software architectures.
SOFTWARE DESIGN
» Design Documentation
Use of models and tools are inadequate to ensure the completeness ~ [35] 8 Implement a standardized process where developers update design documentation before merging code, and
of architecture documentation (B, %). utilize wikis for hosting the documentation.
Architecture documentation becomes obsolete as software evolves [5] 4 Utilize collaborative writing tools to generate and share design documentation.
B ). £ Apply the “code as documentation” principle to minimize costs and efforts in writing and maintaining design
Inadequate tool support for sharing, version control, and tracing of ~ [7] documentation.
scattered design documentation (ﬁ 03).
» Design Principles
Unclear boundaries between architectural elements in software sys-  [9, 18, 20, 25] {4 Isolate software from physical hardware changes in software systems with layered architecture styles.
tems (8§, £3). £ Take into account the underlying business requirements while decomposing cloud-based and microservice
Interdisciplinary knowledge is required to lower coupling and im- - systems into microservices and components.
prove cohesion of software (18, 88). 8 Apply Domain-Driven Design for flexible and iterative microservices architecture design.
» Design Quality Analysis and Evaluation
Architecture review requires a standard process, active involvement [2] o Engage external experts in architecture review and evaluation, and offering prioritized recommendations for
of external experts, and tool support (ﬁ = 63) architecture improvement.
Lack of effective and apply-to-all quantitative measures (%%, £H). - 8 Employ simulation and prototyping to evaluate solutions for architecture decisions.
% Automate a limited set of measures to quantify architecture quality within organizations, leaving room for
practitioners to make decisions.
% Employ whitelists to exclude special cases when measuring architecture quality.
SOFTWARE CONSTRUCTION AND TESTING
» Architecture Conformance Checking
Automated architecture conformance checking is rare ({#5). [8,32] & Avoid knowledge vaporization to maintain consistency between the intended architecture and implemented
Obsolete documentation and lack of traceability hinder automation - system.
of architecture conformance checking (B, £).
» Continuous Architecture Monitoring
Limited tool support to continuously monitor the health status of ~ [29] £ Leverage automated testing frameworks to enable continuous monitoring of system performance.
software architectures (%). 5 Develop tools that facilitate continuous architecture monitoring.
Pinpointing architecture problems requires a system-wide perspec-  [34] £ Allocate resources for maintaining architecture monitoring tools, or establish a dedicated maintenance team.
tive (E8). & Involve architects in the identification of architecture problems during continuous architecture monitoring.
Maintenance of monitoring tools requires ongoing effort (38§). -
» Construction Quality
Technical debts are introduced to software projects (385, £). [6] & B Invest effort and time in addressing technical debts.
Lack of tool support for detecting architectural smells (%5). [26] 2% 9 Automate architectural smell detection to streamline the enforcement of architectural constraints.
Unawareness of correlation between code smells and architecture  [4, 13, 19, 22] 38, &% Promote collaboration among project teams to identify organizational-wide dependency-related

problems (38F).

SOFTWARE MAINTENANCE

» Architecture Erosion

Lack of tool support to explicitly capture and aggregate symptoms
of architecture erosion (£).

Obsolete documentation and increasing complexity of software sys-
tems accelerate architecture erosion (), i8¥).

» Architecture Refactoring

[11,15,21,24]

architectural smells.

% Construct a dashboard for visualizing architecture erosion symptoms gathered from various sources.

No agreement on the value of architecture refactoring (&). [12,16] 8% Foster a software engineering culture where the entire organization collectively prioritizes high-quality
Inadequate tool support for impact analysis of architectural changes ~ [17, 28] software architecture.
(%) 8 Implement a structured process to establish traceability between design and implementation artifacts.
Inadequate tool support for module- and system-level refactoring  [14, 27, 33]
(5
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