
Smart Contract Security: a Practitioners’ Perspective

Zhiyuan Wan��, Xin Xia��, David Lo§, Jiachi Chen�, Xiapu Luo¶, Xiaohu Yang�
�College of Computer Science and Technology, Zhejiang University

�Faculty of Information Technology, Monash University
§School of Information Systems, Singapore Management University
¶Department of Computing, Hong Kong Polytechnic University

{wanzhiyuan,yangxh}@zju.edu.cn, {xin.xia,jiachi.chen}@monash.edu, davidlo@smu.edu.sg, csxluo@comp.polyu.edu.hk

Abstract—Smart contracts have been plagued by security
incidents, which resulted in substantial financial losses. Given
numerous research efforts in addressing the security issues of
smart contracts, we wondered how software practitioners build
security into smart contracts in practice. We performed a mixture
of qualitative and quantitative studies with 13 interviewees and
156 survey respondents from 35 countries across six continents
to understand practitioners’ perceptions and practices on smart
contract security. Our study uncovers practitioners’ motivations
and deterrents of smart contract security, as well as how security
efforts and strategies fit into the development lifecycle. We also
find that blockchain platforms have a statistically significant
impact on practitioners’ security perceptions and practices of
smart contract development. Based on our findings, we highlight
future research directions and provide recommendations for
practitioners.

Index Terms—Security, Empirical study, Smart contract, Prac-
titioner

I. INTRODUCTION

Blockchain is a distributed ledger that provides an

open, decentralized, and fault-tolerant transaction mechanism.

Blockchain technology has attracted considerable attention

from both industry and academia since it is originally intro-

duced for Bitcoin [40] to support the exchange of cryptocur-

rency. Blockchain technology evolves to facilitate general-

purpose computations with a wide range of decentralized

applications. The Smart contract technology is one appealing

decentralized application that enables the computations on top

of a blockchain.

A smart contract is a piece of executable code that runs on

a blockchain to enforce the terms of an agreement between

untrusted parties. Blockchain technology assures that a smart

contract is immutable and contract initiated transactions are

autonomously and truthfully executed. There are multiple

blockchain platforms that support smart contracts [67], e.g.,

Ethereum, Hyperledger Fabric, and Corda, with Ethereum

being the most prominent platform [4].

During the last decade, smart contracts have been plagued

by security incidents, which led to losses reaching millions of

dollars [64]. In June 2016, an attacker exploited vulnerabilities

in the DAO smart contract to empty out around 4 million

Ethers (worth around 50 million dollars). In July 2017, over

150 thousand Ethers (worth over 34 million dollars) had been

�Also with PengCheng Laboratory.
�Corresponding author.

stolen due to an exploit in widely-used Parity Wallet [47]. In

November 2017, over 500 thousand Ethers (worth over 150

million dollars) were frozen due to a vulnerability in the very

same wallet [48].
To address the security issues of smart contracts, researchers

have proposed a broad range of defense solutions, including

language-based security (e.g., [20], [16], [11]), static anal-

ysis (e.g., [38], [64], [63]), and runtime verification (e.g.,

[56]). Vyper [20] removes some of the language function-

alities in Solidity to eliminate vulnerabilities and adds new

features to support security and readability. In terms of static

analysis, Oyente [38] leverages symbolic execution to tra-

verse feasible execution paths on control flow graphs and

detect vulnerabilities in smart contracts; Securify [64] defines

compliance and violation patterns based on known vulnera-

bilities; SmartCheck [63] translates smart contract code into

an XML-based parse-tree and check the parse-tree against

specific XPath patterns. With respect to runtime verification,

Sereum [56] uses taint analysis to monitor runtime data flows

during the execution of smart contracts for preventing re-

entrancy attacks.
Despite numerous efforts in assuring the security of smart

contracts, little is known about how software practitioners

build security into smart contracts in practice. Thus, we

followed a mixed methods approach to investigate the practi-

tioners’ perceptions and practices with respect to smart con-

tract security. We started with semi-structured interviews with

13 software practitioners with experience in smart contract

development, who have an average of 6.5 years of software

professional experience. Through the interviews, we qualita-

tively investigated the security awareness and practices that our

interviewees experienced in smart contract development. We

derived 6 competing priorities in smart contract development,

a list of 11 security motivators1 and 9 security deterrents

for smart contract practitioners, 5 sources where practitioners

acquire security knowledge, 11 security strategies and 11

factors that affect the adoption of security tools. We further

performed an exploratory survey with 156 smart contract

practitioners from 35 countries across six continents to quan-

titatively validate the security perceptions and practices that

are uncovered in our interviews. The survey respondents work

1Security motivators are the factors that motivate practitioners to address
security; on the contrary, security deterrents are the factors that deter practi-
tioners from devoting efforts to security [7].



on multiple blockchain platforms, i.e., public blockchains (80),

consortium blockchains (49), and private blockchains (20), and

hold various job roles, i.e., development (130), testing (3),

and project management (16). We investigated the following

research questions:

RQ1. What are practitioners’ perceptions regarding smart
contract security?

85% and 69% of the survey respondents perceive the impor-

tance of security and privacy in smart contracts, respectively.

The security motivators include practitioners’ awareness of

importance, workplace environment, and perceived negative

consequences of security issues. Meanwhile, the security de-

terrents include competing priorities in smart contract develop-

ment and no formal process to address smart contract security.

RQ2. How does security fit into the development lifecycle
of smart contracts?

This research question investigates security efforts, security

strategies, and the adoption of security tools in smart contract

development. On average, security efforts account for 29%

of the overall efforts during the development process of

smart contracts. To ensure smart contract security, practitioners

distribute efforts across different stages in the development

lifecycle. They tend to spend significantly more effort towards

security at the construction and testing stages than at other

stages. In terms of security strategies and tool adoption,

72% of the respondents frequently leverage more than one

security strategy. 58% of the respondents frequently used the

code reuse strategy. 54% of the respondents frequently adopt

security tools, especially the security plugins in integrated

development environments.

RQ3. Do blockchain platforms influence practitioners’
perceptions and practices on smart contract security?

Blockchain platforms significantly impact security percep-

tions and practices of practitioners in smart contract devel-

opment, including security motivators (e.g., the immutability

of smart contracts), security deterrents (e.g., the pressure of

feature delivery), the amount of security efforts across stages

in the development lifecycle (e.g., security efforts at the

construction stage), and strategies to address smart contract

security (e.g., code review).

Based on the findings, we discuss the disconnect between

the high awareness of smart contract security of practitioners

and the frequent occurrence of security problems in smart con-

tracts. We also provide practical lessons about code reuse, tool

implications, and proactive defense to ensure smart contract

security. In addition, we highlight several research avenues

across blockchain platforms.

This paper makes the following contributions:

� We perform a mixture of qualitative and quantitative stud-

ies to investigate the security perceptions and practices in

smart contract development;

� We provide practical implications for practitioners and

outlined future avenues of research.

� We provide the interview guide, questionnaire, and survey

responses publicly accessible for future investigation by

others2.

The remainder of the paper is structured as follows. Sec-

tion II briefly reviews related work. In Section III, we describe

the methodology of our study in detail. In Section IV, we

present the results of our study. We discuss the implications

of our results in Section V and threats to the validity of our

findings in Section VI. Section VII draws conclusions and

outlines avenues for future work.

II. RELATED WORK

A. Security Practices in Software Development

Practitioners work within organizations, teams, communi-

ties, and cultures. Previous studies investigated the social

factors that could impact various aspects of security practices,

e.g., security tool adoption [72], [71], [68]. Organization and

team policies are a driving factor to tool adoption [10], though

many organizations do not encourage the adoption of security

tools. Large organizations make more use of security tools than

small ones [72]. Existing tools fail to meet the expectations of

practitioners by generating low-quality warning messages [10],

interrupting work flow [31], [10], [60], producing excessive

false positives [31], [10], and integrating poorly with Inte-

grated Development Environments (IDEs) [31]. In this work,

we investigated the factors that impact security practices in

smart contract development.

Security is expected to be included in developing high-

quality software systems, but is rarely listed as an explicit

requirement [51]. Practitioners prioritize functional require-

ments over security and focus on tasks for which outcomes

are easy to measure [72], [51], [6]. Pressures from budget and

deadlines can also lead to lowering the priority of security

practices [74]. Some organizations attempt to use penetration

testing to motivate practitioners, but the motivation is hard

to sustain without continuous support [65]. In this work,

we investigated how practitioners prioritize security in smart

contract development.

Building security in from the start requires a large amount

of knowledge. Weir et al. found that enthusiasm about security

and motivation to learn are more likely to drive the acquisition

of security knowledge for developers than task driven [70].

Alternatively, security experts could act as a roving source of

security knowledge, but face challenges to convince others of

the importance of security and examine all generated code

with limited resources [61]. Practitioners leverage various

information sources to gain knowledge on code security, e.g.,

documentation [39], [2], and Stack Overflow [3]. Acar et

al. [3] conducted an empirical study to investigate how the

use of information sources impacts code security. They found

that developers who use Stack Overflow are more likely to

produce functional code, but less likely to write secure code.

This paper investigates the involvement of security experts in

smart contract development and information sources of smart

contract security.

2http://doi.org/10.5281/zenodo.4005112



Interview 
Guide Interview 

TranscriptSemi-Structured 
Interviews

13 Participants

Open Card Sorting 
on 133 Unique 

Codes

Interviews

Potential
Answers

and 
Statements

Pilot Survey
5 participants

Online Survey
156 Respondents Survey

Findings

Pilot Survey
5 Participants

Fig. 1. Research methodology.

In the course of software design and construction, misuse

of application programming interfaces (APIs) can introduce

security vulnerabilities [19], [21], [24]. Developers incorrectly

use an API because they do not conduct an additional check

but trust the API to do the right thing [44]. Acar et al.

compared the usability of five Python cryptographic APIs and

suggested that documentation with examples is more helpful

than a simple API [2]. Nadi et al. [39] performed an empirical

study on how developers use Java cryptography APIs. They

found that developers struggle with Java cryptography APIs

and prefer task-based solutions. In addition, developers have

difficulty in using security-related APIs, for instance, APIs in

Transport Layer Security (TLS) and Security Sockets Layer

(SSL) [22], [45]. This paper investigates whether the use of

smart contract related APIs may introduce security risks.

B. Smart Contract Security

Security vulnerabilities spread across smart contracts of

various blockchain platforms, e.g., Ethereum [30], [38], [56],

Hyperledger Frabric [75] and EOS [52]. Security vulnerabili-

ties result from multiple causes, e.g., reentrancy [56], delegate-

call injection [53], and integer overflow and underflow [41].

Different programming languages of smart contracts and

blockchain architectures lead to different vulnerabilities [9]. In

this work, we investigate practitioners’ awareness of security

vulnerabilities in their smart contracts.

Previous studies proposed a wide range of approaches and

tools for securing smart contracts, including recommending

best practices in programming smart contracts, implementing

specific programming languages, static analysis, and runtime

monitoring. For instance, ConsenSys [13] provides extensive

best practices for Ethereum smart contract security, including

code patterns to learn and pitfalls to avoid. Vyper [20] and

Bamboo [16] provide language-based support to eliminate

smart contract vulnerabilities. Static analysis tools leverage

symbolic execution [14], [8], [34], [38], [43], [50], abstract

interpretation [25], [32], [59], [64], [76], formal verifica-

tion [26], [5], [27], [29], [28], [49], fuzzing [37], [30], [69]

and model checking [63] to identify smart contract vulnerabil-

ities. DappGuard [15] and Sereum [56] monitor the runtime

execution of a smart contract to prevent potential exploitations

of vulnerabilities. In this work, we investigate the adoption of

security strategies and tools of smart contracts in practice and

explore the expectations of practitioners.

III. METHODOLOGY

Our research methodology followed a mixed methods ap-

proach [17], as depicted in Fig. 1. The approach follows

a sequential explanatory strategy, involving two phases – a

first qualitative phase of interviews, followed by a second

quantitative phase of an exploratory survey3. The survey builds

on the results of the interviews. Specifically, we collected

data from two sources: (1) We interviewed 13 software prac-

titioners with experience in smart contract development and

derived a list of statements and potential answers for survey

questions from the results of interviews; (2) We surveyed 156

respondents with experience in smart contract development.

To preserve the anonymity of participants, we anonymized

all items that constitute of Personally Identifiable Information

(PII) before analyzing the data, and further considered aliases

as PII throughout our study (e.g., refer to the interviewees as

P1 - P13).

A. Interviews

The left part of Fig. 1 describes the process of interviews.

1) Protocol: The first author conducted a series of face-to-

face interviews with 13 software practitioners with experience

in smart contract development. Each interview took 30-45 min-

utes. The interviews were semi-structured and made use of an

interview guide4. To develop the interview guide, we obtained

an initial set of open-ended questions through brainstorming

within the authors of this paper, focusing on practitioners’

perceptions and practices concerning smart contract security.

The interview comprised three parts. In the first part, we

asked some demographic questions about the experience of

the interviewees in smart contract development. The questions

covered various aspects of experience, including programming,

design, testing, and project management.

In the second part, we asked open-ended questions about

the security awareness and practices of smart contract devel-

opment. The purpose of this part was to allow the interviewees

to speak freely about their opinions and experience without the

interviewer biasing their responses.

In the third part, we asked the interviewees to discuss

the sources where they obtain security-related knowledge, as

well as strategies and tools that they have used for security

assurance of smart contracts in the practices.

3The interviews and survey were approved by the relevant institutional re-
view board (IRB). Participants were instructed that we wanted their opinions;
privacy and sensitive resources were not explicitly mentioned

4Interview guide online: http://doi.org/10.5281/zenodo.4005112



At the end of each interview, we thanked the interviewee

and briefly informed her of our next plans.
2) Participant Selection: We recruited full-time software

practitioners with experience in smart contract development

from blockchain companies (e.g., Hyperchain5), IT compa-

nies (e.g., Alibaba) and open-source smart contract projects.

Interviewees were recruited by emailing our contact in each

company or project, who disseminated the news of our study

to their colleagues. Volunteers would inform us if they were

willing to participate in the study with no compensation. With

this approach, 13 volunteers with varied experience in years

contacted us – 7 interviewees from four companies and 6

interviewees from three open-source projects. In the remainder

of this paper, we denote these 13 interviewees as P1 to

P13. These 13 interviewees have an average of 6.5 years of

professional experience in software development (min: 3, max:

13, median: 6.5, sd: 2.7), and an average of 2.3 years in smart

contract development (min: 1, max: 5, median: 2, sd: 1.1).

Table I summarizes the number of interviewees who perceived

themselves as having “extensive” experience (in comparison

to “none” and “some” experience) in a particular role.
3) Data Analysis: We conducted a thematic analysis [18] to

process the recorded interviews by following the steps below:
Transcribing and Coding. After the last interview was

completed, we transcribed the recordings of the interviews,

and developed a thorough understanding by reviewing the

transcripts. The first author read the transcripts and coded the

interviews using NVivo qualitative analysis software [1].
To ensure the quality of codes, the second author verified

initial codes created by the first author and provided sugges-

tions for improvement. After incorporating these suggestions,

we generated a total of 427 cards that contain the codes - 30

to 41 cards for each coded interview. After merging the codes

with the same words or meanings, we have a total of 133

unique codes.
Open Card Sorting. Two of the authors then separately ana-

lyzed the codes and sorted the generated cards into potential

themes for thematic similarity (as illustrated in LaToza et

al.’s study [35]). The themes that emerged during the sorting

were not chosen beforehand. We then use the Cohen’s Kappa

measure [12] to examine the agreement between the two

labelers. The overall Kappa value between the two labelers

is 0.76, which indicates substantial agreement between the la-

belers. After completing the labeling process, the two labelers

discussed their disagreements to reach a common decision.

To reduce bias from the two authors sorting the cards to form

initial themes, they both reviewed and agreed on the final set of

themes. Eventually, we derived 6 competing priorities, a list of

11 security motivators and 9 security deterrents, 5 sources of

security knowledge, and 11 security strategies, and 11 factors

that affect the adoption of security tools.

B. Survey
The right part of Fig. 1 describes the process of our online

survey.

5https://www.hyperchain.cn/en

TABLE I
NUMBER OF INTERVIEWEES WITH “EXTENSIVE” EXPERIENCE IN A

PARTICULAR ROLE.

Role Smart Contract non-Smart-Contract
Programming 10 12
Design 8 6
Management 3 4
Testing 3 3

1) Protocol: We conducted an IRB-approved anonymous

online survey with professional smart contract practitioners.

The survey aims to validate and quantify the observations from

our interviews. We followed Kitchenham and Pfleeger’s guide-

lines for personal opinion surveys [33] and used an anonymous

survey to increase response rates [66]. A respondent has the

option to specify that she prefers not to answer or does not

understand the description of a particular question. We include

this option to reduce the possibility of respondents providing

arbitrary answers.

Recruitment of Respondents. To recruit respondents from

the population of smart contract practitioners, we spread the

survey to a broad range of companies from various loca-

tions worldwide. No identifying information was required or

gathered from our respondents. To get a sufficient number of

respondents from diverse backgrounds, we followed a multi-

pronged strategy to recruit respondents:

� We contacted professionals from blockchain companies

and IT companies that launch blockchain projects around

the world and asked their help to disseminate our survey

within their organizations. Specifically, we sent emails

to our contacts in Alibaba, Baidu, Hengtian, Hyperchain,

IBM, Morgan Stanley, and other companies, encourag-

ing them to disseminate our survey to some of their

colleagues who have experience in smart contract devel-

opment. By following this strategy, we aimed to recruit

respondents working with smart contracts in the industry

from diverse organizations.

� We sent an email with a link to the survey to 1,986

practitioners who contributed to 12 blockchain repos-

itories that support smart contracts (e.g., ethereum/go-
ethereum, EOSIO/eos and hyperledger/fabric) and 580

smart contract repositories (e.g., ethereum/solidity and

EOSIO/eosio.contracts) hosted on GitHub and solicited

their participation. We aimed to recruit open-source prac-

titioners who have smart contract experience in addition

to professionals working in the industry.

Out of these emails, eight emails received automatic

replies notifying us of the absence of the receiver; two

emails indicated the receivers left the original organiza-

tions; four receivers replied that they only have experi-

ence in blockchain but not smart contract development.

2) Survey Design: The survey includes different types of

questions, e.g., multiple-choice and free-text answer questions.

The potential answers and statements of multiple-choice ques-

tions were derived from the results of our interviews. For these

questions, we include an “I don’t know” option in case some

statements are not applicable to the experience of respondents,



or respondents had a poor understanding of the statements.

The survey consists of four sections, grouping questions

by topic to minimize the cognitive load on participants and

allow them to consider the topic more deeply [36]. Specifically,

the following four sections have been captured in the survey

(the complete questionnaire is available online as supplemental

material6):

Demographics. We collected demographic information about

the respondents to allow us to (1) filter respondents who

may not understand our survey (i.e., respondents without any

experience in smart contracts), (2) breakdown the results by

groups (e.g., public, consortium, and private blockchains).

Specifically, we asked two questions:

Do you have experience with smart contracts?
What best describes the primary blockchain platform
that you currently work on?

In terms the second question, we provided four options for

primary blockchain platforms, including (1) public blockchain,

(2) consortium blockchain, (3) private blockchain, and (4)

other.

Based on the selections of respondents, we could exclude

invalid responses and divide the survey respondents into three

groups. To focus the respondents’ attention on a particular

blockchain platform in the survey, they were explicitly asked

to answer each following question with respect to their expe-

rience with the primary blockchain platform they specified.

We received a total of 203 responses, and further excluded

46 responses made by respondents who claimed that they do

not have experience in smart contract development. We also

excluded one response made by a respondent who described

her job role as sales. In the end, we had a set of 156 valid

responses. The 156 respondents reside in 35 countries across

six continents as shown in Fig. 2. The top two countries in

which the respondents reside are China (61) and the United

States (16). The respondents have an average of 6.3 years

of professional experience (min: 0.5, max: 40, median: 4,

sd: 6.9), with an average of 2 years of experience in smart

contract development (min: 0.1, max: 6, median: 2, sd: 1.4).

Our survey respondents are distributed across different demo-

graphic groups (job roles and primary blockchain platforms)

as shown in Fig. 3. Seven respondents who selected Other
as their primary blockchain platforms and explained that

they simultaneously work on more than one blockchain. We

excluded the responses of the seven respondents from any

comparisons between groups of different blockchains.

Perceptions on Smart Contract Security. This section in-

vestigates practitioners’ perceptions of smart contract security,

specifically, the importance of security, awareness of security

problems, as well as the motivators and deterrents to smart

contract security.

Security Practices in Smart Contract Development. This

section focused on security practices in smart contracts, in-

cluding practitioners’ efforts towards security, their strategies

for achieving security, and tools for securing smart contracts.

6Questionnaire Online: http://doi.org/10.5281/zenodo.4005112

0

10

20

30

40

50

60

Fig. 2. Countries in which survey respondents reside. The darker the color is,
the more respondents reside in that country. The legend indicates the number
of respondents.

Fig. 3. Survey respondents demographics. The number indicates the count
of each demographic group.

More details about the questions and format are available

in Section IV, along with the corresponding results.

We piloted the preliminary survey with a small set of smart

contract practitioners who were different from our intervie-

wees and survey takers. We obtained feedback on (1) whether

the length of the survey was appropriate, and (2) the clarity and

understandability of the terms. We made minor modifications

to the preliminary survey based on the received feedback and

produced a final version. Note that the collected responses

from the pilot survey are excluded from the presented results

in this paper.

To support respondents from China, we translated our

survey to Chinese before publishing the survey. We chose to

make our survey available both in English on Google Forms,

and in Chinese on a popular survey website in China7. The

reason is that English is an international lingua franca, and

Chinese is the most spoken language. We expected that a large

number of our survey recipients are fluent in one of these two

languages. We carefully translated our survey to make sure

there exists no ambiguity between English and Chinese terms

in our survey. Also, we polished the translation by improving

clarity and understandability according to the feedback from

our pilot survey.

3) Data Analysis: We analyzed the survey results based on

the question types. For multiple-choice questions, we reported

the percentage each option is selected. In terms of open-ended

questions, we followed an inductive approach in which two

authors separately performed open card sorting and regularly

discussed emerging themes until an agreement was reached.

Factor Analysis. To identify meaningful clusters of closely

related information, we used factor analysis to analyze the

Likert-scale ratings of the statements with respect to the

security motivators and security deterrents in smart contract

7https://www.wjx.cn

wanzh
Highlight



% of Valid Responses

N
um

be
r o

f V
al

id
 R

es
po

ns
es

Supporting many features
Costing less gas

Easy to use
Protecting privacy

Securing against malicious attacks
Avoiding bugs

100 50 0 50 100

149
148
150
150
151
152

Not at All Slightly Moderately Very Extremely

Fig. 4. Importance of Different Requirements.

development. Specifically, we used principal axis factor anal-

ysis in the psych R library [54] to group related information

with a cut-off point of �0.4� for factor loading. We used the

fa.parallel function in the psych R library to select

the optimal number of factors for factor analysis. Thus, we

reduced a large set of variables into a smaller set (factors)

while retaining the majority of original information [62].

Comparison. We classified our respondents into different

groups based on their primary blockchain platforms (i.e., pub-

lic, consortium, and private blockchains), and compared the

survey results of different groups of respondents. For instance,

we used the Wilcoxon rank-sum test for Likert-scale answers

to perform the comparison. All statistical tests assumed a p-

value � 0.05 as a significant level. Bonferroni correction was

applied to adjust p-values in multiple comparisons.

IV. RESULTS

We explain the results of three research questions that

investigate smart contract security from the perspective of

practitioners.

A. RQ1: Perceptions of Smart Contract Security

In RQ1, we explored practitioners’ priorities in smart con-

tract development, what motivates them and deters them to

address smart contract security, and their experience of secu-

rity problems. To understand practitioners’ priorities in smart

contract development, we presented our respondents with six

statements that describe the requirements of smart contracts.

Respondents ranked the importance of each requirement on

a 5-point Likert scale (not at all, slightly, moderately, very,

extremely). To explore what drives practitioners to address

smart contract security, we presented our respondents with a

list of 11 statements that describe potential security motivators

and 9 statements that explain potential security deterrents.

Respondents indicated their level of agreement with each state-

ment on a 5-point Likert scale (strongly disagree, disagree,

neutral, agree, strongly agree). In addition, we asked the

respondents to report whether their smart contracts have ever

experienced a security problem as well as the sources where

they gain security knowledge.

Importance of Security. Fig. 4 shows respondents’ ratings

of the importance of various requirements in their smart

contracts. In addition to avoiding bugs, 85% and 69% of the

respondents considered security and privacy very or extremely
important, respectively. The ratings were higher than the

requirement of costing less gas in smart contracts.

TABLE II
FACTOR ANALYSIS OF MOTIVATORS TO SMART CONTRACT SECURITY.

Variables (Motivators as presented in the survey) Factor
loading

Awareness of Importance
[M7] I see software security as my responsibility. 0.76
[M6] Software security is a shared responsibility by all those
involved in the development lifecycle.

0.71

[M8] I care about my users’ experience in security and
privacy.

0.68

[M1] Software security is in my company’s culture. 0.51
Workplace Environment

[M3] My company is audited for smart contract security by
an external entity.

0.73

[M2] My company mandates security practices in smart
contract development.

0.61

Perceived Negative Consequences
[M4] My company would lose customers in case of a security
breach.

0.78

[M5] Security breaches would hurt my company’s reputation. 0.66
[M9] Customers would lose money in case of a security
breach.

0.56

Motivators not belonging to any factor
[M10] The deployed smart contracts are immutable.
[M11] It is challenging to detect and trace attacks on smart
contracts deployed to blockchains.

Security Motivators. We asked the respondents “I care about
smart contract security because ...” and presented the 11

potential motivators for smart contract security. As shown in

Fig. 5, the top two security motivators are respondents’ internal

motivations8, i.e., to protect their users and the reputation of

their companies. Meanwhile, external motivations9 are report-

edly less motivating, i.e., the immutability of smart contracts

and external auditing.

We used factor analysis to cluster the 11 motivators into

three factors as shown in Table II. Two motivators did not

conform to any particular factor. We named the factors as

awareness of importance, workplace environment and per-
ceived negative consequences. Out of the three factors, work-
place environment is the only external motivation.

Security Deterrents. Respondents generally opposed state-

ments that imply deferring or ignoring security, as suggested

by the longer red bars in comparison with blue bars (Fig. 6).

The top two deterrents of smart contract security are a lack of

awareness of security attacks, followed by a formal process.

Our factor analysis combined 8 out of the 9 deterrents into

two factors; 1 deterrent did not correspond to any particular

factor (Table III). The first factor competing priorities and
no process describes how a lack of security can arise from

systemic causes within an organization or a team. The other

factor irrelevance of security characterizes the personal-level

awareness of security risks that can deter practitioners from

addressing smart contract security.

Experiencing Security Problems. 40% of our respondents

reported that they had experienced at least one out of three

potential security problems, i.e., vulnerabilities in unshipped

8Internal motivation: people stand behind a behavior out of their interests
and values [58].

9External motivation: people do a behavior for reasons external to the
self [58].



% of Valid Responses

N
um

be
r o

f V
al

id
 R

es
po

ns
es

The deployed smart contracts are immutable. [M10]
My company is audited for smart contract security by an external entity. [M3]

It is challenging to detect and trace attacks on smart contracts deployed to blockchains. [M11]
My company mandates security practices in smart contract development. [M2]

Software security is in my company's culture. [M1]
Customers would lose money in case of a security breach. [M9]

My company would lose customers in case of a security breach. [M4]
I see software security as my responsibility. [M7]

Software security is a shared responsibility by all those involved in the development lifecycle. [M6]
Security breaches would hurt my company's reputation. [M5]

I care about my users' experience in security and privacy. [M8]

100 50 0 50 100

150
138
148
142
147
148
146
150
147
148
149

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 5. Motivators of smart contract security.

% of Valid Responses

N
um

be
r o

f V
al

id
 R

es
po

ns
es

Smart contract security is not my responsibility. [D2]
It is easy to mitigate the negative impact of a security breach. [D8]

It is unlikely that our smart contract will be attacked. [D7]
In my team, it is more important to deliver features on time than to address smart contract security. [D4]

My team does not have the budget to address smart contract security. [D5]
Smart contract security is a burden on top of my main responsibilities. [D3]

Available security tools for smart contracts are not useful. [D9]
My company does not have a formal process for smart contract security. [D6]

The smart contracts I develop are not prone to security attacks. [D1]

100 50 0 50 100

150
145
144
151
146
148
138
144
138

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 6. Deterrents of smart contract security.

TABLE III
FACTOR ANALYSIS OF DETERRENTS TO SMART CONTRACT SECURITY.

Variables (Deterrents as presented in the survey) Factor
loading

Competing Priorities and No Process
[D5] My team does not have the budget to address smart
contract security.

0.86

[D6] My company does not have a formal process for smart
contract security.

0.79

[D4] In my team, it is more important to deliver features on
time than to address smart contract security.

0.74

[D2] Smart contract security is not my responsibility. 0.52
[D3] Smart contract security is a burden on top of my main
responsibilities.

0.43

Irrelevance of Security
[D7] It is unlikely that our smart contract will be attacked. 0.64
[D1] The smart contracts I develop are not prone to security
attacks.

0.58

[D8] It is easy to mitigate the negative impact of a security
breach.

0.56

Deterrents not belonging to any factor
[D9] Available security tools for smart contracts are not
useful.

code, vulnerabilities in shipped code, and security breaches.

Identification of vulnerable code before smart contracts were

shipped was the most frequently reported (22%) security

problem in our survey. 19% of the respondents indicated that

vulnerabilities were discovered in shipped smart contracts.

10% reported that their smart contracts experienced a security

breach. We note that these numbers are not mutually exclusive;

10% of the respondents reported multiple security problems.

Sources of Security Knowledge. Official forums of

blockchain platforms (60%), research papers (53%), question

and answer websites (47%) are the top three most popular

sources for respondents to acquire security knowledge about

smart contracts. We note that these numbers are not mutually

% of Valid Responses

N
um

be
r o

f V
al

id
 R

es
po

ns
es

Requirement
Maintenance
Deployment

Design
Construction

Testing

100 50 0 50 100

146
144
144
146
145
146

Not at All Slightly Moderately Very Extremely

Fig. 7. Security efforts across stages in development lifecycle.

exclusive; 74% of our respondents use more than one source

to gain knowledge of smart contract security.

B. RQ2: Security Practices in Smart Contract Development

The survey had several questions exploring the efforts and

strategies that development teams employ to ensure smart

contract security. 44% of our respondents received support

from professional security experts.

Efforts towards Security. Respondents reported the percent-

age of efforts directed towards security out of the overall

efforts in the development lifecycle of smart contracts. They

also reported to what extent security was considered for each

stage in the development lifecycle (i.e., requirement, design,

construction, testing, deployment, and maintenance).

Our respondents indicated that, on average, security efforts

account for 29% (min: 0%, max: 100%, median: 20%, sd:

26%) of the overall efforts in smart contract development. 14

respondents indicated that their teams do not spend any effort

on security.

We used the Wilcoxon rank sum test to determine if the

distribution of security efforts statistically significantly differs



% of Valid Responses

N
um

be
r o

f V
al

id
 R

es
po

ns
es

Fuzzing [S7]
External Auditing [S9]

Formal Verification [S5]
Vulnerability Scan [S6]

Threat Assessment [S1]
Runtime Monitoring [S10]

Security Testing [S8]
Static Analysis [S4]
Code Reuse [S11]

Code Style Checking [S2]
Code Review [S3]

100 50 0 50 100

141
141
143
143
142
141
144
145
141
148
148

Very Rarely Rarely Sometimes Often Very Often

Fig. 8. Strategies for handling smart contract security.

across different stages in the process. As shown in Fig. 7,

security effort at the testing stage was statistically significantly

higher than that at the requirement (p-value = 0.01) and

maintenance stages (p-value = 0.04). Security effort at the

construction stage was statistically significantly higher than

that at the requirement stage (p-value = 0.05). Although our

interviewees (P4 and P6) mentioned that “we try to get it
(security) right from the beginning”, security effort at the

requirement stage was ranked at the bottom across different

stages in the development lifecycle.

Strategies to Address Smart Contract Security. We pro-

vided a list of 11 statements that describe potential security

strategies, and asked the respondents to rate each statement

from the list on a 5-point Likert scale (very rarely, rarely,

sometimes, often, very often).

Our respondents combine various strategies to address smart

contract security in practice. 72% of our respondents fre-

quently leverage more than one security strategy in smart

contract development. As shown in Fig. 8, code review is

the most frequently used security strategy – 72% of our

respondents indicated that they often or very often rely on

code review to address smart contract security. 61% and 58%

of the respondents often or very often do code style checking

and reuse code from reliable sources, respectively. Only 28%

of the respondents often or very often integrate fuzzing into

the development lifecycle.

A total of 24 respondents provided free-form text comments

regarding other security strategies they use in practice. Out of

the 24 respondents, 11 drilled down the aforementioned strate-

gies; the other 13 respondents identified additional strategies

(followed by their corresponding frequency) as follows:

� Security by Design (5): “Security concerns should be
built into the framework and exposed via documented,
developer-friendly APIs so that good security is easy and
bad security is hard.”

� Programming Languages (3): “... use the most stable
version of Solidity avoiding the latest one.”

� Dependency Management (2): “Dependency management
to ensure we’re using recent versions.”

� Learning from Past Experiences (2) “... failure code of
others in the past.”

� Seeking Support from Experts (1): “... ensured by cryp-
tography designing together with experts.”

% of Valid Responses

N
um

be
r o

f V
al

id
 R

es
po

ns
es

Multiple Languages
Run Fast

Extensible
Cost Little Money

Low False Positives
Low False Negatives

Easy To Use
Highly Automated

Understandable Reports
Broadly Cover Issues

Actively Maintained

100 50 0 50 100

146
147
146
147
147
146
147
147
147
146
148

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 9. Factors that affect adoption of security tools.

Tools to Address Smart Contract Security. We further

investigated the adoption of security tools for smart contracts.

54% of our respondents indicated that they frequently adopt

security tools in smart contract development. Security plug-

ins in Integrated Development Environments (IDE) are the

most popular security tool for smart contracts – 45% of our

respondents indicated that they often or very often rely on

security plugins in IDEs to address smart contract security.

We further investigated how frequently the security tools for

smart contracts have been adopted in practice. 19%, 12%,

14% and 12% of the respondents reported that they often or

very often use Mythril [14], Oyente [38], SmartCheck [63] and

Slither [23], respectively.

In addition, we investigated what factors affect the adoption

of security tools in smart contract development. We provided

a list of 11 statements that describe potential factors and asked

the respondents to rate each statement from the list on a 5-

point Likert scale (strongly disagree, disagree, neutral, agree,

strongly agree). As shown in Fig. 9, active maintenance is

the most important factor in the adoption of security tools

(85% agree or strongly agree). 86% of the respondents agree
or strongly agree that coverage of security issues affects the

adoption of security tools.

C. RQ3: Effect of Blockchain Platforms on Security Percep-
tions and Practices

In RQ3, We explore whether blockchain platforms influence

security motivators and deterrents to smart contract security,

as well as security efforts across different stages and strategies

towards smart contract security.

We summarize the results of comparisons in Table IV. The

Statement column shows the statements presented to respon-

dents in the survey. These statements describe the motivators,

deterrents, stages in the development lifecycle, and security

strategies. The following column indicates the labels we used

to identify statements throughout the paper.

The Effect Size column indicates the difference between

Public Blockchain and Consortium Blockchain in the first

subcolumn, Public Blockchain and Private Blockchain in the

second subcolumn, and Consortium Blockchain and Private
Blockchain in the third subcolumn. We use Cliff’s delta to

measure the magnitude of the differences because Cliff’s

delta is reported to be more robust and reliable than Cohen’s

delta [57]. Cliff’s delta represents the degree of overlap



TABLE IV
IMPACT OF BLOCKCHAIN PLATFORMS ON SMART CONTRACT SECURITY. ORANGE CELLS INDICATE WHERE THE FORMER GROUP IS MORE NEGATIVE

ABOUT THE STATEMENT THAN THE LATTER GROUP; BLUE CELLS INDICATE WHERE THE FORMER GROUP IS MORE POSITIVE. GREEN CELLS

REPRESENT STATISTICALLY SIGNIFICANT DIFFERENCES. THE NUMBER IN “()” INDICATES THE SIZE OF EACH GROUP.

Effect Size P-value
Public (80) Public (80) Consortium (49) Public (80) Public (80) Consortium (49)

vs. vs. vs. vs. vs. vs.
Statement Consortium (49) Private (20) Private (20) Consortium (49) Private (20) Private (20)

Motivators:
Software security is in my company’s culture. [M1] 0.16 0.09 -0.09 1.000 1.000 1.000

My company mandates security practices in smart contract development. [M2] 0.16 -0.02 -0.20 1.000 1.000 1.000

My company is audited for smart contract security by an external entity. [M3] 0.20 0.14 -0.06 0.740 1.000 1.000

My company would lose customers in case of a security breach. [M4] 0.18 0.09 -0.11 0.778 1.000 1.000

Security breaches would hurt my company’s reputation. [M5] 0.07 0.10 0.02 1.000 1.000 1.000

Software security is a shared responsibility by all those involved in the development lifecycle. [M6] -0.09 -0.05 0.05 1.000 1.000 1.000

I see software security as my responsibility. [M7] 0.18 0.23 0.03 0.739 0.890 1.000

I care about my users’ experience in security and privacy. [M8] 0.16 0.19 0.01 0.972 1.000 1.000

Customers would lose money in case of a security breach. [M9] 0.02 -0.01 -0.04 1.000 1.000 1.000

The deployed smart contracts are immutable. [M10] 0.39 0.14 -0.24 0.002 1.000 1.000

It is challenging to detect and trace attacks on smart contracts deployed to blockchains. [M11] -0.13 -0.10 0.01 1.000 1.000 1.000

Deterrents:
The smart contracts I develop are not prone to security attacks. [D1] -0.19 -0.09 0.12 0.674 1.000 1.000

Smart contract security is not my responsibility. [D2] -0.36 -0.28 0.08 0.003 0.345 1.000

Smart contract security is a burden on top of my main responsibilities. [D3] 0.06 -0.22 -0.28 1.000 1.000 0.608

In my team, it is more important to deliver features on time than to address smart contract security. [D4] -0.43 -0.54 -0.12 0.000 0.001 1.000

My team does not have the budget to address smart contract security. [D5] -0.23 -0.35 -0.21 0.268 0.130 1.000

My company does not have a formal process for smart contract security. [D6] -0.17 -0.33 -0.23 0.999 0.244 1.000

It is unlikely that our smart contract will be attacked. [D7] 0.03 -0.12 -0.16 1.000 1.000 1.000

It is easy to mitigate the negative impact of a security breach. [D8] -0.06 -0.24 -0.21 1.000 0.922 1.000

Available security tools for smart contracts are not useful. [D9] -0.02 -0.34 -0.37 1.000 0.280 0.223

Security Efforts at Stages:
Requirement [E1] 0.23 0.01 -0.22 0.174 1.000 0.945

Design [E2] 0.27 -0.06 -0.34 0.059 1.000 0.186

Construction [E3] 0.28 0.00 -0.25 0.042 1.000 0.675

Testing [E4] 0.21 0.22 0.09 0.255 0.806 1.000

Deployment [E5] 0.21 -0.08 -0.30 0.251 1.000 0.394

Maintenance [E6] 0.27 0.08 -0.15 0.057 1.000 1.000

Security Strategies:
Threat Assessment [S1] 0.06 0.34 0.32 1.000 0.265 0.435

Code Style Checking [S2] 0.14 0.17 0.03 1.000 1.000 1.000

Code Review [S3] 0.40 0.38 0.09 0.001 0.079 1.000

Static Analysis [S4] 0.04 0.26 0.28 1.000 0.886 0.867

Formal Verification [S5] -0.03 0.13 0.19 1.000 1.000 1.000

Vulnerability Scan [S6] -0.02 0.17 0.26 1.000 1.000 1.000

Fuzzing [S7] -0.14 0.10 0.24 1.000 1.000 1.000

Security Testing [S8] 0.11 0.24 0.18 1.000 1.000 1.000

External Auditing [S9] 0.17 0.19 0.04 1.000 1.000 1.000

Runtime Monitoring [S10] 0.06 0.13 0.10 1.000 1.000 1.000

Code Reuse [S11] 0.28 0.22 -0.04 0.079 1.000 1.000

between two sample distributions, ranging from �1 to �1. The

extreme value �1 occurs when the intersection between both

groups is an empty set. When the compared groups tend to

overlap, Cliff’s Delta approaches zero. The magnitudes can be

assessed with the thresholds as specified in [57]: if �δ� � 0.147,

the effect size is negligible; if 0.147 � �δ� � 0.33, the effect

size is small; if 0.330 � �δ� � 0.474, the effect size is

medium; and otherwise the effect size is large. Effect sizes are

additionally colored on a gradient from blue to orange based

on the magnitudes of difference: blue color means the former

group is more positive about the statement, and orange color

means the latter group is more positive about the statement.

The P-value column indicates whether the differences for

each statement are statistically significant between Public
Blockchain and Consortium Blockchain in the first subcolumn,

Public Blockchain and Private Blockchain in the second sub-

column, and Consortium Blockchain and Private Blockchain
in the third subcolumn. Statistically significant differences at

a 95% confidence level (Bonferroni corrected p-value � 0.05)

are highlighted in green.

Based on the observed statistically significant differences

and effect sizes, we can say with some certainty that:

� Security Motivators: The blockchain platforms signifi-

cantly impact the security motivator in terms of the im-

mutability of smart contracts. The immutability of smart

contracts drives practitioners of public blockchains more

intensively than practitioners of consortium blockchains.

In addition, the practitioners of public blockchains tend

to be more motivated to address smart contract security

than those of consortium and private blockchains.

� Security Deterrents: The blockchain platforms signif-

icantly affect the deterrents to security with respect to

competing priorities in smart contract development. Prac-

titioners of public blockchains tend to be more willing

to prioritize security tasks over feature delivery and take

the responsibility of addressing smart contract security,

in comparison with those of consortium and private

blockchains.

� Security Efforts across Stages: The blockchain plat-

forms statistically significantly impact the security efforts

at the construction stage in the development lifecycle.

Practitioners of public blockchains spend more efforts

towards security throughout the six stages in the devel-

opment lifecycle, especially at the construction stage, in

comparison with practitioners of consortium blockchains.

In addition, practitioners of consortium blockchains tend

to put less emphasis on security at the requirement,

construction, deployment, and maintenance stages, in

comparison with practitioners of private blockchains.

� Security Strategies: The blockchain platforms signifi-

cantly affect the code review strategy that practitioners

use to address smart contract security. Practitioners of

public blockchains tend to perform code review more

frequently than practitioners of consortium and private

blockchains. Aside from code review, we observed no sig-

nificant difference in the frequency of use of other secu-



rity strategies between public and consortium blockchain

practitioners. Private blockchain practitioners tend to use

security strategies less frequently than public and consor-

tium blockchain practitioners.

V. DISCUSSION

We reflect on our findings of research questions, delving

into security awareness and risks of smart contracts, as well

as code reuse and tool implications in smart contracts. We

also highlight the avenues of future research across blockchain

platforms.

A. Security Awareness and Risks of Smart Contracts

The vast majority of our respondents acknowledge the

importance of smart contract security (RQ1). They prioritize

security over the reduction of execution cost (e.g., gas con-

sumption) in smart contract development. Our respondents

spend 29% of overall efforts on average in conducting security-

related tasks. Previous studies found that developers generally

exhibit a “security is not my responsibility” attitude [73]. On

the contrary, 85% of our respondents see smart contract secu-

rity as their responsibility. Smart contract practitioners tend
to have a higher awareness of security than practitioners
in other software areas.

Despite the high awareness of security among smart con-

tract practitioners, 40% of our survey respondents indicated

that their smart contracts suffered from security problems,

including security breaches (RQ1). The percentage is higher

than that of software in general (33%) as reported in a recent

survey [7]. The frequent occurrence of security problems in

smart contracts may stem from the optimism bias [55] ([D1])

and lack of a formal security process ([D6]) as suggested in

RQ1. In addition, smart contracts on public blockchains are

visible and accessible to all users, even malicious attackers.

The inherent features of smart contracts make them more

prone to security attacks than traditional software. Future

work may focus on standardizing and operationalizing the
process of building security in smart contracts.

B. Code Reuse and Tool Implications in Smart Contracts

58% of the respondents frequently reuse code from reliable

sources in smart contract development (RQ2). For instance,

OpenZeppelin proposes the SafeMath libraries [46] to help

developers of Ethereum smart contracts perform proper val-

idation on numeric inputs and prevent integer overflow and

underflow vulnerabilities. Only two respondents in our sur-

vey mentioned that they use dependency management as a

security strategy. Previous studies found that improper use

of libraries, including security-related APIs, can introduce

security vulnerabilities [19], [21], [24], [39]. Future studies

could put more effort into providing documentations of
smart contract libraries with helpful examples and tools
to facilitate library updates for smart contract development.

To facilitate code reuse, Ethereum Virtual Machine provides

an opcode, DELEGATECALL [34], for dynamically loading

the bytecode of a callee contract into the caller contract at

runtime. A DoS attack against the Parity wallet leveraged the

vulnerability due to improper use of DELEGATECALL. Thus,

code reuse in smart contracts can impose a higher risk than its

counterpart in traditional software, highlighting the importance

of security auditing on broadly used smart contracts and
libraries.

Active maintenance ranks on top of the factors that affect the

adoption of security tools for smart contracts (RQ2). Among

the four tools we investigated, the most frequently used tool,

Mythril [14], has released 102 versions since its first release

on October 4, 2017 – an average of 3 releases per month. The

active maintenance would enable security tools to uncover the

latest emerging security issues. As suggested in our survey,

the practitioners tend to rely on security plugins in IDEs and

prefer tools that cover a broad range of security issues. Thus,

the future work could focus on automatically incorporating
emerging security issues into security tools and integrating
various security tools into the IDEs. In addition, the strategy

of chasing behind the attackers is not adequate to address

smart contract security. Practitioners could proactively de-
fense smart contracts against security attacks via external
auditing and fuzzing.

C. Studies across Blockchain Platforms

The results of RQ3 indicates that blockchain platforms

impact practitioners’ perceptions and practices on smart con-

tract security. Nonetheless, previous studies usually focus on

one blockchain platform. It could be interesting to inves-

tigate the difference in security issues across different
blockchains, and whether and how existing tools can be
used across different blockchains. In addition, practitioners

of public blockchains tend to be more motivated to address

smart contract security than those of consortium and private

blockchains. The potential reason could be the accessibility

of public blockchains to any users, even malicious attackers.

Future research could investigate whether the practitioners
of consortium and private blockchains make an economic
decision of security strategies based on risk assessment.

VI. THREATS TO VALIDITY

Internal Validity. In our study, the interviewees were

selected by a contact at each company or open-source project

who identified the practitioners to be interviewed. The pro-

cedure partially alleviates the threat of selection bias since

the interviewer has no contact with interviewees before the

interviews. The threat of selection bias would always be

present when the interviewees were not fully randomly sam-

pled. However, given that our interviews include practitioners

with various job roles and from different companies and open-

source projects, the threat has limited effect.

As for the survey, it is possible that some of our respondents

had a poor understanding of the statements for rating. Their

responses may introduce noise to the data that we collected. To

reduce the impact of this issue, we included an “I don’t know”

option in the survey and ignored responses marked as such. We

also dropped responses that were submitted by people whose

wanzh
Highlight

wanzh
Highlight



job roles are none of these: software development, testing,

and project management. Two of the authors translated our

survey to Chinese to ensure that respondents from China could

understand our survey well. To reduce the bias of presenting

the survey bilingually, we carefully translated our survey to

ensure there is no ambiguity between English and Chinese

terms. We polished the translation by improving clarity and

understandability according to the feedback from our pilot

survey.

Construct Validity. In our interviews, the evaluation appre-

hension was ameliorated by the anonymity of the interviewees,

as well as the guaranty that all the information obtained

during the interviews would be used only by the researchers.

The interviewer might have influenced the interviewees by

asking specific questions. To mitigate this risk, we used open-

ended questions to elicit as much information as possible

from practitioners. The interviewees may have had a different

understanding of the questions than what we had intended. To

minimize this aspect, we encouraged the interviewees to ask

questions at all times.

In our survey, the results are based on respondents’

self-reported responses, which may be subject to bias and

not exactly represent reality. We followed recommendations

to reduce social-desirability bias by ensuring respondents’

anonymity [42]. The questionnaire in our survey is based on

interview results instead of validated scales. Although we use

factor analysis to analyze the results, it may be insufficient to

validate the scales.

Conclusion Validity. The interviews were conducted at differ-

ent locations and each interview was done in one work session.

Thus, answers were not influenced by internal discussions. To

ensure that the interview instrument is of high quality to obtain

reliable measures, we conducted several pilots to improve the

questions and layout of the interview guide prior to conducting

the interviews.

In addition, we did our best to randomly select survey

respondents from both companies and open-source projects.

Our survey respondents come from 35 countries across six

continents who are work in various job roles with a wide range

of experience.

External Validity. To improve the generalizability of our

findings regarding smart contract development, we interviewed

13 interviewees from blockchain companies and open-source

blockchain projects. We further surveyed 156 respondents

from 35 countries across six continents who are work-

ing for various companies or contributing to open-source

blockchain/smart contract projects that are hosted on GitHub,

in various job roles.

VII. CONCLUSION

This work proposed a mixed qualitative and quantitative

approach to explore practitioners’ perceptions and practices

on smart contract security. We recognized the disconnect

between the security awareness of smart contract practitioners

and the occurrence of security problems in smart contracts.

We also provided practical lessons about code reuse, tool

implications, and proactive defense to ensure smart contract

security. Besides, we observed several differences between

smart contract security and regular security: (1) Smart contract

practitioners tend to have a higher security awareness than

regular practitioners; (2) Smart contracts are more prone to

security attacks than regular software; (3) More frequent code

reuse in smart contract development imposes higher security

risk than regular software development. Future studies could

put more effort into investigating the differences in various

aspects of smart contracts on top of different blockchain plat-

forms, and generalize existing tools across different blockchain

platforms.

ACKNOWLEDGEMENTS

This research was partially supported by the National Key

R&D Program of China (No. 2020YFB1005400), Australian

Research Council’s Discovery Early Career Researcher Award

(DECRA) Funding Scheme (DE200100021), ARC Discov-

ery Grant (DP200100020), National Science Foundation of

China (No. U20A20173), Hong Kong RGC Project (No.

152193/19E), and the National Research Foundation, Singa-

pore under its Industry Alignment Fund - Prepositioning (IAF-

PP) Funding Initiative. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

author(s) and do not reflect the views of National Research

Foundation, Singapore.

REFERENCES

[1] Nvivo qualitative data analysis software, 2021.
[2] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,

and C. Stransky. Comparing the usability of cryptographic apis. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P
’17), pages 154–171. IEEE, 2017.

[3] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.
You get where you’re looking for: The impact of information sources
on code security. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P ’16), pages 289–305. IEEE, 2016.

[4] M. Alharby and A. Van Moorsel. Blockchain-based smart contracts: A
systematic mapping study. arXiv preprint arXiv:1710.06372, 2017.

[5] S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards verifying
ethereum smart contract bytecode in isabelle/hol. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pages 66–77, 2018.

[6] H. Assal and S. Chiasson. Security in the software development
lifecycle. In Proceedings of the 14th Symposium on Usable Privacy
and Security (SOUPS ’18), pages 281–296, 2018.

[7] H. Assal and S. Chiasson. ’think secure from the beginning’ a survey
with software developers. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, pages 1–13, 2019.

[8] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang. scompile: Critical
path identification and analysis for smart contracts. In Proceedings of
the International Conference on Formal Engineering Methods, pages
286–304. Springer, 2019.

[9] H. Chen, M. Pendleton, L. Njilla, and S. Xu. A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses. ACM Computing
Surveys (CSUR), 53(3):1–43, 2020.

[10] M. Christakis and C. Bird. What developers want and need from pro-
gram analysis: an empirical study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16),
pages 332–343, 2016.

[11] M. Coblenz. Obsidian: a safer blockchain programming language.
In Proceedings of the IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-Companion ’17), pages 97–99.
IEEE, 2017.

[12] J. Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.



[13] ConsenSys. Ethereum smart contract security best practices. https:
//consensys.github.io/smart-contract-best-practices, 2018. Online; ac-
cessed February 2021.

[14] ConsenSys. Mythril. https://github.com/ConsenSys/mythril, 2020. On-
line; accessed February 2021.

[15] T. Cook, A. Latham, and J. H. Lee. Dappguard: Active monitoring and
defense for solidity smart contracts. https://courses.csail.mit.edu/6.857/
2017/project/23.pdf, 2020. Online; accessed February 2021.

[16] Cornell Blockchain. Bamboo: a language for morphing smart contracts.
https://github.com/CornellBlockchain/bamboo, 2020. Online; accessed
February 2021.

[17] J. W. Creswell and J. D. Creswell. Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[18] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis
in software engineering. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement, pages 275–284.
IEEE, 2011.

[19] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of
the ACM SIGSAC conference on Computer and communications security
(CCS ’13), pages 73–84, 2013.

[20] Ethereum Foundation. Vyper documentation. https://vyper.readthedocs.
io/en/latest/?badge=latest, 2020. Online; accessed February 2021.

[21] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith. Why eve and mallory love android: An analysis of android
ssl (in) security. In Proceedings of the ACM conference on Computer
and communications security (CCS ’12), pages 50–61, 2012.

[22] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith. Rethinking ssl
development in an appified world. In Proceedings of the ACM SIGSAC
conference on Computer and communications security (CCS ’13), pages
49–60, 2013.

[23] J. Feist, G. Grieco, and A. Groce. Slither: a static analysis framework
for smart contracts. In Proceedings of the IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain,
pages 8–15. IEEE, 2019.

[24] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: validating
ssl certificates in non-browser software. In Proceedings of the ACM
conference on Computer and communications security (CCS ’12), pages
38–49, 2012.

[25] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis. Madmax: Surviving out-of-gas conditions in ethereum smart
contracts. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1–27, 2018.

[26] I. Grishchenko, M. Maffei, and C. Schneidewind. Foundations and tools
for the static analysis of ethereum smart contracts. In Proceedings of the
International Conference on Computer Aided Verification, pages 51–78.
Springer, 2018.

[27] I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework
for the security analysis of ethereum smart contracts. In Proceedings of
the International Conference on Principles of Security and Trust, pages
243–269. Springer, 2018.

[28] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, et al. Kevm: A complete
formal semantics of the ethereum virtual machine. In Proceedings of the
IEEE 31st Computer Security Foundations Symposium, pages 204–217.
IEEE, 2018.

[29] Y. Hirai. Defining the ethereum virtual machine for interactive theorem
provers. In Proceedings of the International Conference on Financial
Cryptography and Data Security, pages 520–535. Springer, 2017.

[30] B. Jiang, Y. Liu, and W. Chan. Contractfuzzer: Fuzzing smart contracts
for vulnerability detection. In Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE ’18),
pages 259–269. IEEE, 2018.

[31] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In Proceedings
of the 35th International Conference on Software Engineering (ICSE
’13), pages 672–681. IEEE, 2013.

[32] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: Analyzing safety of
smart contracts. In Proceedings of the Network and Distributed Systems
Security Symposium (NDSS ’18), 2018.

[33] B. A. Kitchenham and S. L. Pfleeger. Personal opinion surveys. In Guide
to advanced empirical software engineering, pages 63–92. Springer,
2008.

[34] J. Krupp and C. Rossow. teether: Gnawing at ethereum to automatically
exploit smart contracts. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security ’18), pages 1317–1333, 2018.

[35] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: A
study of developer work habits. In Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06), pages 492–501, New
York, NY, USA, 2006. ACM.

[36] J. Lazar, J. H. Feng, and H. Hochheiser. Research Methods in Human-
Computer Interaction. John Wiley & Sons, 2010.

[37] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard:
finding reentrancy bugs in smart contracts. In Proceedings of the
IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion ’18), pages 65–68. IEEE, 2018.

[38] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart
contracts smarter. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16), pages 254–269,
2016.

[39] S. Nadi, S. Krüger, M. Mezini, and E. Bodden. Jumping through hoops:
Why do java developers struggle with cryptography apis? In Proceedings
of the 38th International Conference on Software Engineering (ICSE
’16), pages 935–946, 2016.

[40] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bitcoin
White Paper, 2008.

[41] National Vulnerability Database. Cve-2018-10299. https://nvd.nist.gov/
vuln/detail/CVE-2018-10299, 2018. Online; accessed February 2021.

[42] A. J. Nederhof. Methods of coping with social desirability bias: A
review. European journal of social psychology, 15(3):263–280, 1985.

[43] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding the
greedy, prodigal, and suicidal contracts at scale. In Proceedings of the
34th Annual Computer Security Applications Conference, pages 653–
663, 2018.

[44] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,
R. Bobhate, L. A. DeLong, J. Cappos, and Y. Brun. Api blindspots:
Why experienced developers write vulnerable code. In Proceedings of
the 14th Symposium on Usable Privacy and Security (SOUPS ’18), pages
315–328, 2018.

[45] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl. To pin or
not to pin—helping app developers bullet proof their tls connections. In
Proceedings of the 24th USENIX Security Symposium (USENIX Security
’15), pages 239–254, 2015.

[46] OpenZeppelin. Safemath. https : / / github . com / OpenZeppelin /
openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol, 2018.
Online; accessed February 2021.

[47] Parity Technologies. The multi-sig hack: A postmortem. https://www.
parity. io/ the-multi-sig-hack-a-postmortem/, 2008. Online; accessed
February 2021.

[48] Parity Technologies. Security alert: Parity wallet (multi-sig wallets).
https://www.parity.io/security-alert-2/, 2008. Online; accessed February
2021.

[49] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu. A formal
verification tool for ethereum vm bytecode. In Proceedings of the 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE
’18), pages 912–915, 2018.

[50] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev. Verx: Safety verification of smart contracts. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P ’20), pages 18–
20, 2020.

[51] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda. Can
security become a routine? a study of organizational change in an agile
software development group. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work and Social Computing (CSCW
’17), pages 2489–2503, 2017.

[52] L. Quan, L. Wu, and H. Wang. Evulhunter: Detecting fake transfer
vulnerabilities for eosio’s smart contracts at webassembly-level. arXiv
preprint arXiv:1906.10362, 2019.

[53] Qureshi, Haseeb. A hacker stole $ 31m of ether–how it happened,
and what it means for ethereum. https://www.freecodecamp.org/news/
a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for
-ethereum-9e5dc29e33ce/, 2017. Online; accessed February 2021.

[54] W. Revelle. psych: Procedures for personality and psychological
research, 2017.

[55] H.-S. Rhee, Y. U. Ryu, and C.-T. Kim. Unrealistic optimism on
information security management. Computers & Security, 31(2):221–
232, 2012.



[56] M. Rodler, W. Li, G. O. Karame, and L. Davi. Sereum: Protecting
existing smart contracts against re-entrancy attacks. In Proceedings of
the Network and Distributed Systems Security Symposium (NDSS ’19),
2019.

[57] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys.
In Proceedings of the Annual Meeting of the Florida Association of
Institutional Research, pages 1–33, 2006.

[58] R. M. Ryan and E. L. Deci. Self-determination theory and the facilitation
of intrinsic motivation, social development, and well-being. American
psychologist, 55(1):68, 2000.

[59] M. Suiche. Porosity: A decompiler for blockchain-based smart contracts
bytecode. DEF CON, 25:11, 2017.

[60] T. W. Thomas, H. Lipford, B. Chu, J. Smith, and E. Murphy-Hill. What
questions remain? an examination of how developers understand an
interactive static analysis tool. In Proceedings of the 12th Symposium
on Usable Privacy and Security (SOUPS ’16), 2016.

[61] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford. Security during
application development: An application security expert perspective.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, pages 1–12, 2018.

[62] B. Thompson. Exploratory and confirmatory factor analysis: Under-
standing concepts and applications. Applied Psychological Measure-
ment, 31(3):245–248, 2007.

[63] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov. Smartcheck: Static analysis of
ethereum smart contracts. In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
pages 9–16, 2018.

[64] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev. Securify: Practical security analysis of smart contracts.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18), pages 67–82, 2018.

[65] S. Türpe, L. Kocksch, and A. Poller. Penetration tests a turning point
in security practices? organizational challenges and implications in a
software development team. In Proceedings of the 12th Symposium on
Usable Privacy and Security (SOUPS ’16), 2016.

[66] P. K. Tyagi. The effects of appeals, anonymity, and feedback on mail
survey response patterns from salespeople. Journal of the Academy of
Marketing Science, 17(3):235–241, Jun 1989.

[67] Z. Wan, X. Xia, and A. E. Hassan. What do programmers discuss about
blockchain? a case study on the use of balanced lda and the reference
architecture of a domain to capture online discussions about blockchain
platforms across the stack exchange communities. IEEE Transactions
on Software Engineering, 2019.

[68] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang. Perceptions,
expectations, and challenges in defect prediction. IEEE Transactions on
Software Engineering, 46(11):1241–1266, 2020.

[69] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar-aware
greybox fuzzing. In Proceedings of the IEEE/ACM 41st International
Conference on Software Engineering (ICSE ’19), pages 724–735. IEEE,
2019.

[70] C. Weir, A. Rashid, and J. Noble. How to improve the security skills
of mobile app developers? comparing and contrasting expert views. In
Proceedings of the 12th Symposium on Usable Privacy and Security
(SOUPS ’16), 2016.

[71] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann. Quantifying developers’ adoption of security tools.
In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (FSE ’15), pages 260–271, 2015.

[72] S. Xiao, J. Witschey, and E. Murphy-Hill. Social influences on secure
development tool adoption: why security tools spread. In Proceedings
of the 17th ACM conference on Computer Supported Cooperative Work
and Social Computing (CSCW ’14), pages 1095–1106, 2014.

[73] S. Xiao, J. Witschey, and E. Murphy-Hill. Social influences on secure
development tool adoption: why security tools spread. In Proceedings
of the 17th ACM conference on Computer Supported Cooperative Work
& Social Computing, pages 1095–1106, 2014.

[74] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security
errors? In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC ’11), pages 161–164. IEEE,
2011.

[75] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun. Potential risks
of hyperledger fabric smart contracts. In Proceedings of the IEEE
International Workshop on Blockchain Oriented Software Engineering
(IWBOSE ’19), pages 1–10. IEEE, 2019.

[76] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey.
Erays: reverse engineering ethereum’s opaque smart contracts. In
Proceedings of the 27th USENIX Security Symposium (USENIX Security
’18), pages 1371–1385, 2018.




