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Abstract—Adding an ability for a system to learn inherently adds
uncertainty into the system. Given the rising popularity of incorporating
machine learning into systems, we wondered how the addition alters
software development practices. We performed a mixture of quali-
tative and quantitative studies with 14 interviewees and 342 survey
respondents from 26 countries across four continents to elicit significant
differences between the development of machine learning systems and
the development of non-machine-learning systems. Our study uncovers
significant differences in various aspects of software engineering (e.g.,
requirements, design, testing, and process) and work characteristics
(e.g., skill variety, problem solving and task identity). Based on our
findings, we highlight future research directions and provide recommen-
dations for practitioners.

Index Terms—Software engineering, machine learning, practitioner,
empirical study

1 INTRODUCTION

Machine learning (ML) has progressed dramatically over
the past three decades, from a laboratory curiosity to
a practical technology in widespread commercial use
[19]. Within artificial intelligence, machine learning has
emerged as the method of choice for developing useful
software systems for computer vision, speech recogni-
tion, natural language processing, robot control, and
other applications. Machine learning capabilities may be
added to a system in several ways, including software
systems with ML components and ML frameworks, tools
and libraries that provide ML functionalities. A wide-
spread trend has emerged: developing and deploying
ML systems! is relatively fast and cheap, but maintaining
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1. In this paper, unless otherwise mentioned, we use ML systems to
refer to either software frameworks, tools, and libraries that provide
ML functionalities, or software systems that include ML components.

them over time is difficult and expensive due to technical
debt [19]. ML systems have all of the problems of non-
ML software systems plus an additional set of ML specif-
ic issues. For instance, probabilistic modeling provides
a framework for a machine to learn from observed data
and infer models that can make predictions. Uncertainty
plays a fundamental role in probabilistic modeling [14]:
Observed data can be consistent with various models,
and thus which model is appropriate given the data is
uncertain. Predictions about future data and the future
consequences of actions are uncertain as well. To tackle
the ML specific issues, recent studies have put effort
into building tools for testing [26], [30], [36], [39] and
debugging [16], [27], [28] of machine learning code,
and creating frameworks and environments to support
development of ML systems [3], [6].

Despite these efforts, software practitioners still strug-
gle to operationalize and standardize the software de-
velopment practices of systems using ML2. Operational-
ization and standardization of software development
practices are essential for cost-effective development of
high-quality and reliable ML systems. How does ma-
chine learning change software development practices?
To systematically explore the impact, we performed a
mixture of qualitative and quantitative studies to inves-
tigate the differences in software development that arise
from machine learning. We start with open-ended in-
terviews with 14 software practitioners with experience
in both ML and non-ML, who have an average of 7.4
years of software professional experience. Through the
interviews, we qualitatively investigated the differences
that were perceived by our interviewees and derived
80 candidate statements that describe the differences.
We further improved the candidate statements via three
focus group discussions and performed a survey with
342 software practitioners from 26 countries across four
continents to quantitatively validate the differences that
are uncovered in our interviews. The survey respondents
work in various job roles, i.e., development (69%), testing
(24%) and project management (7%). We investigated
the following research questions:

RQ1. How does the incorporation of ML into a
system impact software development practices?

2. https:/ /twitter.com/AndrewYNg/status/1080886439380869122



Is developing ML systems different from developing
non-ML systems? How does it differ? If developing ML
systems is indeed different from non-ML software de-
velopment, past software engineering research may need
to be expanded to better address the unique challenges
of developing ML systems; previous tools and practices
may become inapplicable to the development of ML sys-
tems; software engineering educators may need to teach
different skills for the development of ML systems. Our
study found several statistically significant differences in
software engineering practices between ML and non-ML
development:

o Requirements: Collecting requirements in the de-
velopment of ML systems involves more prelimi-
nary experiments, and creates a need for the pre-
dictable degradation in the performance.

o Design: Detailed design of ML systems is more
time-consuming and tends to be conducted in an
intensively iterative way.

o Testing and Quality: Collecting a testing dataset
requires more effort for ML development; Good
performance® during testing cannot guarantee the
performance of ML systems in production.

o Process and Management: The availability of data
limits the capability of ML systems; Data process-
ing is more important to the success of the whole
process.

RQ2. How do the work characteristics from applied

psychology, like skill variety, job complexity and prob-
lem solving, change when incorporating ML into a
system?
How does the context of software development (e.g.,
skill variety, job complexity and problem solving)
change, when practitioners involve ML in their software
development practices? Our study identified several s-
tatistically significant differences in work characteristics
between ML and non-ML development:

o Skill Variety: ML development intensively requires
knowledge in math, information theory, and statis-
tics.

o Job Complexity and Problem Solving: ML prac-
titioners have a less clear roadmap for building
systems.

o Task Identity: It is much harder to make an accurate
plan for the tasks for ML development.

o Interaction: ML practitioners tend to communicate
less frequently with clients.

Based on the findings, we present the causes behind
the identified differences as discussed by our intervie-
wees - the uncertainty in requirements and algorithms,
and the vital role of data. We also provide practical
lessons about the roles of preliminary experiments, re-
producibility and performance reporting, and highlight
several research avenues such as continuous perfor-
mance measurement and debugging.

3. In this paper, unless otherwise mentioned, we use performance to
refer to model performance.

This paper makes the following contributions:

o We performed a mixture of qualitative and quantita-
tive studies to investigate the differences in software
practices and practitioners” work due to the impact
of machine learning;

o We provided practical implications for researchers
and outlined future avenues of research.

The remainder of the paper is structured as follows.
Section 2 briefly describes the processes and concepts
regarding ML development. In Section 3, we describe
the methodology of our study in detail. In Section 4,
we present the results of our study. In Section 5, we
discuss the implications of our results as well as any
threats to the validity of our findings. In Section 6, we
briefly review related work. Section 7 draws conclusions
and outlines avenues for future work.

2 BACKGROUND

The development of machine learning systems is a multi-
faceted and complex task. Various forms of processes of
ML development have been proposed [2], [11], [12], [35].
These processes share several common essential steps:
context understanding, data curation, data modeling,
and production and monitoring.

In the context understanding step, ML practitioners i-
dentify areas of business that could benefit from machine
learning and the available data. ML practitioners would
communicate with stakeholders about what machine
learning is capable and not capable of to manage expec-
tations. Most importantly, ML practitioners frame and
scope the development tasks by conducting preliminary
experiments in a particular application context.

The data curation step includes data collection from dif-
ferent sources, data preprocessing, and training, validation
and test dataset creation. Since data often come from
different sources, ML practitioners should stitch together
data, and deal with missing or corrupted data through
data preprocessing. To create an appropriate dataset for
supervised learning techniques, data labeling is required
to assign ground truth labels to each record.

The data modeling step includes feature engineering,
model training, and model evaluation. Feature engineering
refers to the activities that transform the given data into
a form which is easier to interpret, including feature
extraction and selection for machine learning models.
During model training, ML practitioners choose, train,
tune machine learning models using the chosen fea-
tures. Model tuning includes adjusting parameters and
identifying potential issues in the current model or the
previous steps. In model evaluation, practitioners evaluate
the output model on the test dataset using pre-defined
evaluation measures.

During the production and monitoring step, ML practi-
tioners export the model into a pre-defined format and
usually create an API or Web application with the model
as an endpoint. ML practitioners also plan for retraining
the model with updated data. The model performance



is continuously monitored for errors or unexpected con-
sequences, and input data are monitored to identify if
they change with time in a way that would invalidate
the model.

We use the process above of ML development and
related terminology as the vocabulary for discussions in
this work.

3 METHODOLOGY

Our research methodology followed a mixed qualitative
and quantitative approach as depicted in Fig. 1. We col-
lected data from different sources*: (1) We interviewed
14 software practitioners with experience in both ML
development and non-ML development; (2) We derived
a list of 80 candidate statements from the results of
interviews, and conducted three focus group discussions
to reduce our list to 31 final statements for our survey;
(3) We surveyed 342 respondents, which we describe
below. To preserve the anonymity of participants, we
anonymized all items that constitute of Personally Iden-
tifiable Information (PII) before analyzing the data, and
further considered aliases as PII throughout our study
(e.g., refer to the interviewees as P1 - P14).

3.1 Interviews
3.1.1  Protocol

The first author conducted a series of face-to-face inter-
views with 14 software practitioners with experience in
both ML development and non-ML development. Each
interview took 30-45 minutes. According to Guest et al.
[15], conducting 12 to 15 interviews of a homogeneous
group is adequate to reach saturation. We observed a
saturation when our interviews were drawing to a close.
The interviews were semi-structured and made use of an
interview guide®. The guide contains general groupings
of topics and questions, rather than a pre-determined
specific set and order of questions.

The interview comprised four parts. In the first part,
we asked some demographic questions about the ex-
perience of the interviewees in both ML development
and non-ML development. We covered various aspects
including programming, design, project management,
and testing.

In the second part, we asked an open-ended question
about what differences the interviewee noticed between
ML development versus non-ML development. The pur-
pose of this part was to allow the interviewees to speak
freely about differences without the interviewer biasing
their responses.

In the third and fourth part, we presented interviewees
with two lists of topics and asked them to discuss the

4. The interviews, focus group and survey were approved by the
relevant institutional review board (IRB). Participants were instructed
that we wanted their opinions; privacy and sensitive resources were
not explicitly mentioned.

5. Interview Guide Online: https://drive.google.com/file/d/
1ZOXwbSKY6zPnuOEzGlzZFMJ3DIERYDSYG

topics that they have not explicitly mentioned. One of the
list comes from the Guide to the Software Engineering
Body of Knowledge (SWEBOK) [7], which consists of 10
knowledge areas, e.g., software design and software testing.
The other list comes from general work characteristics
[18] in applied psychology, which consists of 21 work
characteristics, e.g., skill variety and problem solving. We
chose SWEBOK to ensure that software engineering top-
ics were comprehensively discussed, and general work
characteristics to ensure that we covered a breadth of
potential differences. In the third part, interviewees were
asked to choose three topics from the two lists to discuss.
In the fourth part, interviewer selected three topics from
the two lists that had been discussed the least in previous
interviews, to ensure coverage of the topics.

At the end of each interview, we thanked the intervie-
wee and briefly informed him/her of our next plans.

During the interviews, each interviewee talked about
a median of 6 topics where he/she shared his/her per-
ceived difference between ML development and non-ML
software development (min: 1, max: 12, mean: 6.6, sd:
3.2). The topics mentioned by the interviewees include:
SWEBOK: Requirements (9 interviewees), SWEBOK: De-
sign (6 interviewees), SWEBOK: Construction (10 inter-
viewees), SWEBOK: Tools (7 interviewees), SWEBOK:
Testing (9 interviewees), SWEBOK: Quality (5 intervie-
wees), SWEBOK: Maintenance (4 interviewees), SWEBOK:
Process (8 interviewees), SWEBOK: Configuration Man-
agement (3 interviewees), Work: Skill Variety (10 inter-
viewees), Work: Job Complexity (5 interviewees), Work:
Problem Solving (4 interviewees), Work: Task Identify (7
interviewees), Work: Autonomy (1 interviewees), Work:
Interdependence (4 interviewees), and Work: Interaction
Outside the Organization (1 interviewees).

3.1.2 Participant Selection

We recruited full-time employees with experience in
both ML systems and non-ML systems from three IT
companies based in Hangzhou, China, namely Aliba-
ba, Bangsun®, and Hengtian’. Bangsun is a technology
provider which has more than 400 employees and devel-
ops real-time risk control systems for the financial sector
and anti-fraud products. Hengtian is an outsourcing
company which has more than 2,000 employees and
focuses on outsourcing projects from US and European
corporations (e.g., State Street Bank, Cisco, and Reuters).
Interviewees were recruited by emailing our contact in
each company, who was then responsible for dissemi-
nating news of our study to their colleagues. Volunteers
would inform us if they were willing to participate in
the study with no compensation. With this approach,
14 volunteers contacted us with varied experience in
years. In the remainder of the paper, we denote these 14
interviewees as P1 to P14. These 14 interviewees have
an average of 7.6 years of professional experience (min:

6. https:/ /www.bsfit.com.cn
7. http:/ /www.hengtiansoft.com/?lang=en
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Fig. 1: Research methodology.

TABLE 1: Number of interviewees with “extensive” ex-
perience in a particular role.

Role Machine Learning non-Machine-Learning
Programming 5 6
Design 5 3
Management 2 2
Testing 2 3

3, max: 16, median: 6, sd: 4), including 2.4 years in ML
system development (min: 1, max: 5, median: 2, sd: 1.6)
and 5.2 years in non-ML software development (min:
2, max: 11, median: 4.5, sd: 2.6). Table 1 summarizes
the number of interviewees who perceived themselves
with “extensive” experience (in comparison to “none”
and “some” experience) in a particular role.

3.1.3 Data Analysis

We conducted a thematic analysis [8] to process the
recorded interviews by following the steps below:
Transcribing and Coding. After the last interview
was completed, we transcribed the recordings of the
interviews, and developed a thorough understanding
through reviewing the transcripts. The first author read
the transcripts and coded the interviews using NVivo
qualitative analysis software [1]. To ensure the quality
of codes, the second author verified initial codes cre-
ated by the first author and provided suggestions for
improvement. After incorporating these suggestions, we
generated a total of 295 cards that contain the codes -
15 to 27 cards for each coded interview. After merging
the codes with the same words or meanings, we have
a total of 128 unique codes. We noticed that when our
interviews were drawing to a close, the collected codes
from interview transcripts reached a saturation. New
codes did not appear anymore; the list of codes was
considered stable.

Open Card Sorting. Two of the authors then separately
analyzed the codes and sorted the generated cards into
potential themes for thematic similarity (as illustrated
in LaToza et al.’s study [24]). The themes that emerged
during the sorting were not chosen beforehand. We then

use the Cohen’s Kappa measure [10] to examine the
agreement between the two labelers. The overall Kappa
value between the two labelers is 0.78, which indicates
substantial agreement between the labelers. After com-
pleting the labeling process, the two labelers discussed
their disagreements to reach a common decision. To
reduce bias from two of the authors sorting the cards to
form initial themes, they both reviewed and agreed on
the final set of themes. Finally, we derived 80 candidate
statements that describe the differences.

3.2 Focus Groups

To focus the survey and keep it to a manageable size,
we wanted to hone in on the statement that are most
likely to differ when ML is incorporated into a software
system. To determine which of the 80 candidate state-
ments had this characteristic, the first author conducted
three focus group sessions. Each focus group session
lasted for 1.5 to 2 hours and involved 3 participants.
The 9 participants are professionals with experience in
both ML and non-ML development from various IT
companies in China (e.g., Baidu, Alibaba and Huawei).
They were informed about the purpose of our study
and gave their consent to use the focus group results
for research purposes.

During the focus group sessions, the first author went
through the 80 candidate statements, and asked the
following question “is the statement more true for ML
development, in comparison with non-ML developmen-
t”. Based on the feedback, we removed 7 statements in
which the participants did not understand the difference
or did not think there was a difference for ML vs. non-
ML development. In addition, we removed 42 statements
in which over half of our focus group participants
perceived no obvious difference between ML and non-
ML development. In the end, we identified a list of 31
statements.



3.3 Survey
3.3.1 Protocol

The survey aims to quantify the differences between
ML and non-ML software development expressed by
interviewees over a wide range of software practitioners.
We followed Kitchenham and Pfleeger’s guidelines for
personal opinion surveys [23] and used an anonymous
survey to increase response rates [37]. A respondent has
the option to specify that he/she prefers not to answer
or does not understand the description of a particular
question. We include this option to reduce the possibility
of respondents providing arbitrary answers.
Recruitment of Respondents. The participants of the
survey were informed about the purpose of our study
and gave their consent to use the survey results for
research purposes.

To recruit respondents from both ML and non-ML
populations, we spread the survey broadly to a wide
range of companies from various locations around the
world. To get a sufficient number of respondents from
diverse backgrounds, we followed a multi-pronged strat-
egy to recruit respondents:

o We contacted professionals from various countries
and IT companies and asked their help to dissemi-
nate our survey within their organizations. We sent
emails to our contacts in Amazon, Alibaba, Baidu,
Google, Hengtian, IBM, Intel, IGS, Kodak, Lenovo,
Microsoft, Morgan Stanley, and other companies
from various locations around the world, encourag-
ing them to complete the survey and disseminate
it to some of their colleagues. By following this
strategy, we aimed to recruit respondents working
in the industry from diverse organizations.

o We sent an email with a link to the survey to 1,831
practitioners that contributed to 18 highest-rated
machine learning repositories hosted on GitHub
(e.g., TensorFlow and PyTorch) and solicited their
participation. By sending to GitHub contributors to
machine learning repositories, we aimed to recruit
respondents who are open source practitioners in
addition to professionals working in the industry.
We chose this set of potential respondents to collect
responses from ML practitioners for contrast; if ML
respondents provide significantly different respons-
es than non-ML respondents, this provides quan-
titative evidence to establish a difference between
ML and non-ML development. Moreover, the reason
for choosing the 18 high-rated machine learning
repositories was that the contributors would po-
tentially be two types: practitioners of ML frame-
work/tool/library (ML FIL) and practitioners of M-
L application® (ML App). We were unsure whether
high variances in software differences would over-
whelm ML versus non-ML differences. Out of these
emails, eight emails received automatic replies no-
tifying us of the absence of the receiver.

8. A software system with ML components.

No identifying information was required or gathered
from our respondents.

3.3.2 Survey Design

We captured the following pieces of information in our
survey (the complete questionnaire is available online as
supplemental material®):

Demographics. We collected demographic information
about the respondents to allow us to (1) filter respon-
dents who may not understand our survey (i.e., re-
spondents with less relevant job roles), (2) breakdown
the results by groups (e.g., developers and testers; ML
practitioners and non-ML practitioners).  Specifically,
we asked the question “What best describes your primary
product area that you currently work on?”, and provided
options including (1) ML framework/system/library, (2) ML
application, (3) Non-ML framework/system/library, (4) Non-
ML application, and (5) Other. The respondents selected
one item from the provided options as their primary
product area. Based on their selections, we divided the
survey respondents into 5 groups.

We received a total of 357 responses. We excluded
ten responses made by respondents whose job roles are
neither development, testing nor project management.
Those respondents describe their job roles as a researcher
(5), student (3) network infrastructure specialist (1), and
university professor (1). We also excluded five respons-
es made by respondents who selected Other as major
product areas and specified their major product areas
as: ecology (1), physics (1), or a combination of multiple
product areas that do not seem oriented at the produc-
tion of a commercially relevant software product (3). In
the end, we had a set of 342 valid responses.

The 342 respondents reside in 26 countries across four
continents as shown in Fig. 2. The top two countries in
which the respondents reside are China and the United
States. The number of years of professional experience
of the respondents varied from 0.1 to 25 years, with
an average of 4.3 years. Our survey respondents are
distributed across different demographic groups (job
roles and product areas) as shown in Fig. 3.
Practitioners’ Perceptions. We provided the list of 31
final statements, and asked practitioners to respond to
each statement on a 5-point Likert scale (strongly disagree,
disagree, neutral, agree, strongly disagree). To focus the
respondents’ attention on a particular area in the survey,
they were explicitly asked to rate each statement with
respect to their experience with the major product area
they specified.

We piloted the preliminary survey with a small set of
practitioners who were different from our interviewees,
focus-group participants and survey takers. We obtained
feedback on (1) whether the length of the survey was ap-
propriate, and (2) the clarity and understandability of the
terms. We made minor modifications to the preliminary

9. Questionnaire Online: https://drive.google.com/file/d/
124ttMmqSXglilIEUuev AMP85jvP4uyVoc
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Fig. 2: Countries in which survey respondents reside.
The darker the color is, the more respondents reside in
that country. The legend presents the top 5 countries
with most respondents.
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Fig. 3: Survey respondents demographics. The number
indicates the count of each demographic group.

survey based on the received feedback and produced a
final version. Note that the collected responses from the
pilot survey are excluded from the presented results in
this paper.

To support respondents from China, we translated
our survey to Chinese before publishing the survey. We
chose to make our survey available both in Chinese and
English because Chinese is the most spoken language
and English is an international lingua franca. We expect
that a large number of our survey recipients are fluent
in one of these two languages. We carefully translated
our survey to make sure there exists no ambiguity
between English and Chinese terms in our survey. Also,
we polished the translation by improving clarity and
understandability according to the feedback from our
pilot survey.

3.3.3 Data Analysis

We examined distributions of Likert responses for our
participants and compared the distributions of different
groups of participants using Wilcoxon rank-sum test,
i.e, ML vs. non-ML, and ML framework/tool/library
vs. ML application. We report the full results in Section
4.3; along the way in Section 4.1 and 4.2, we link inter-
viewees’ comments with survey responses by referring
to survey statements like: [S1]. We number statements
in the order in which they appeared in the survey, S1
through S31. We annotate each with whether they are

statistically significant or not as follows:

o [V S1] Significant difference between ML devel-
opment and non-ML development that confirm-
s interviewees’ responses and no significant dif-
ference between the development of ML frame-
work/tool/library and development of ML software
application;

o [v v S1] Significant difference between ML devel-
opment and non-ML development, and significant
difference between the development of ML frame-
work/tool/library and development of ML software
application;

« [S1] No significant differences;

o [X S1] Significant difference between ML devel-
opment and non-ML development, but opposite of
interviewees’ responses.

o [X v S1] Significant difference between ML de-
velopment and non-ML development, but oppo-
site of interviewees’ responses; and significan-
t difference between development of ML frame-
work/tool/library and development of ML software
application.

o [v S1] No significant difference between ML de-
velopment and non-ML development; but signifi-
cant difference between development of ML frame-
work/tool/library and development of ML software
application.

Other outcomes are theoretically possible but did not

occur in our survey results.

4 RESULTS

In this section, we report the results grouped based
on the interview topics. We combined several topics
into one when interviewees had little to say about a
particular topic. In some cases, we have anonymized
parts of quotes to maintain interviewees’ privacy.

4.1 RQ1. Differences in Software Engineering Prac-
tices

4.1.1 Software Requirements

Nearly every interviewee made a strong statement about
differences between the requirements of ML systems
versus the requirements of non-ML systems. In essence,
requirements of ML systems are generally data-driven
- closely coupled with existing large-scale data of a
particular application context.

Interviewees noted that requirements are more uncer-
tain for ML systems than non-ML systems [S1]. As P9
noted, given “machine learning systems usually aim to
improve or accelerate the decision-making process (of
executives in an organization or a company)”, rather
than detailed functional descriptions, the requirements
usually include a conceptual description about the goal
after applying the machine learning systems. Since the
requirements of machine learning systems are data-
driven, different data would lead to different require-
ments. Even for the same data, as P1 and P6 suggested,



a different understanding of the data and different ap-
plication contexts would lead to different requirements.
Nevertheless, prior knowledge about the data and ap-
plication contexts bring determinism to a certain extent.
P6 gave a specific example, suggesting that how prior
knowledge helps to understand the data and application
contexts:

There exists a kind of prior knowledge named “scenario

prior knowledge”. For instance, we know that the data

imbalance problem occurs in the application of fraud de-

tection. This is because good guys always account for a

larger amount of people than bad guys. As we also know, in

the field of online advertising, the conversion rate'® usually
seems low and there exists a limit.

Instead of functional requirements in non-ML software
systems, quantitative measures comprise the majority of
requirements for ML systems. As P4 pointed out, dis-
tinct types of quantitative measures would be leveraged
to define requirements, e.g., accuracy, precision, recall, F
measure and normalized discounted cumulative gain (nD-
CG). These quantitative measurements could either come
from the “captain’s call” by business stakeholders (P6)
or be collected by project managers through user studies
(P5). As P4 put it, the target scores for quantitative
measures could vary from one application to another.
In some safety-critical domains, the accuracy of ML
systems is of great importance. As a consequence, higher
scores of quantitative measures are expected for safety
considerations. P5 echoed this, saying

For online shopping recommendation systems, the quanti-
tative measures are relatively not so restricted, and lower
measures are tolerable.

In contrast to non-ML systems, requirements for ML
systems usually involve a large number of preliminary
experiments [/ 52]. As P6 noted, business stakeholders
might suggest leveraging a number of emerging machine
learning algorithms to solve their business problems.
One of the consequences is that it requires the require-
ment specialists to have a strong technical background
in machine learning. The other consequence is that re-
quirement validation process involves a larger amount
of preliminary experiments. Those preliminary experi-
ments are conducted by software engineers and intend to
validate and select machine learning algorithms among
various candidates. As P8 explained,

Say A, B and C algorithms might be all suitable for a
particular application context, but the performance closely
depends on the actual data in practice. Requirements can-
not be validated until preliminary experiments have been
conducted.

The requirement should consider the predictable
degradation in the performance of ML systems [+ S3].
As P6 noted, most of the ML systems might experience
performance degradation after a period in production.
P6 gave an example: In a fraud detection application,

10. The probability that the user who sees the ad on his or her
browser will take an action, i.e., the user will convert [25].

adversaries are always trying to find ways to evade
detection strategies. As a result, two inherent require-
ments are expected for ML systems. First, ML systems
are expected to be degradation-sensitive, i.e., be capable
of perceiving performance degradation. Second, once a
performance degradation occurs, ML system needs to
have considerable capability to adapt to the degradation,
either by feeding new data to the learning algorithm or
training a brand new model by using new data.

As we will discuss in subsequent sections, data-driven
and large-scale characteristics of ML systems have sev-
eral consequences to the way they are developed, com-
pared to non-ML systems.

4.1.2 Software Design

Interviewees repeatedly mentioned that the design of
ML systems and non-ML software systems differently
place emphasis in a few ways.

First, the high-level architectural design for ML sys-
tems is relatively fixed [X S4]. As P3 summarized, the
architecture of ML systems typically consists of da-
ta collection, data cleaning, feature engineering, data
modeling, execution, and deployment. In contrast, the
architectural design for non-ML software systems is a
more creative process, which implements various struc-
tural partitioning of software components and generates
behavioral descriptions (e.g., activity diagrams and data
flow diagrams) (P12). Due to the high volume of data,
the distributed architectural style is widely preferred for
ML systems. Distributed architectural style usually leads
to complexity in architectural and detailed design.

Second, ML systems place less emphasis on low cou-
pling in components than non-ML software systems [S5].
Although different components in ML systems have
separate functionalities, they are highly coupled. For
instance, the performance of data modeling is dependent
on data processing. As P14 noted, “‘garbage in and
garbage out’ - I would spend 40% of my time on data
processing since I found that poor data processing could
fail any potential effective [machine learning] models ...
I divide the data processing into multiple steps and may
use existing libraries for each step”.

Third, detailed design is more flexible for ML systems
than non-ML software systems [S6]. P1 noted that data
modeling could contain tens to hundreds of candidates
of machine learning algorithms, which indicates an am-
ple search space. P6 echoed this, saying

Even for the same machine learning algorithm, various
application contexts may introduce differences in the di-
mensions of data, and further lead to changes in machine
learning models.

As a consequence, the detailed design of ML systems
would be time-consuming and conducted in an iterative
way [ S7]. To design an effective model, software en-
gineers tend to conduct a large number of experiments.



4.1.3 Software Construction and Tools

Interviewees reported several differences between ML
systems and non-ML software systems in terms of cod-
ing practice. First, the coding workload of ML systems is
low compared to non-ML software systems [S8]. Instead
of coding for implementing particular functionalities
in non-ML software systems, coding in ML system-
s generally includes data processing (e.g., transforma-
tion, cleansing, and encoding), feature analysis (e.g.,
visualization and statistical testing), and data modeling
(e.g., hyperparameters selection and model training).
P14 pointed at the availability of useful frameworks
and libraries for data processing and data modeling.
These frameworks and libraries help developers accel-
erate the coding process. To achieve better performance,
developers can extend these frameworks or libraries to
be adapted for their own use. Second, there is little
code reuse between and within ML systems, compared
to non-ML software systems [S9]. One reason is that
ML systems frequently have a significant emphasis on
performance. However, the performance of ML systems
highly depends on the data; data vary across different
application contexts. Thus, project-specific performance
tuning is necessary.

Debugging in non-ML software systems aims to locate
and fix bugs in the code [S10]. Unlike non-ML software
systems, debugging in ML systems aims to improve
performance. The performance of ML systems generally
cannot be aware or evaluated “until the last minute
when the data model is finalized” (P13, P14). Efficiently
finalizing a data model is playing an important role in
the construction of ML systems. However, data modeling
involves multiple iterative training rounds. Considering
the high volume of data, each round of training may take
a long time, days or weeks, if complete data are taken. It
is infeasible to use complete data to train models for each
round. Thus, several interviewees suggested a practical
data modeling process (P4, P6, P13):

You need to build several training datasets of different sizes
from small-scale to large-scale. You start with the small-
scale dataset to train models. Till you achieve acceptable
results, you move to a larger scale. Finally, all the way up,
you would find a satisfactory model.

Although this process improves the training efficiency,
incomplete training data might risk introducing inac-
curacy in intermediate results that may lead to bias in
models.

Interviewees mentioned that ML systems and non-ML
software systems differ in debugging practice. Debug-
ging practice of non-ML software systems typically us-
es step-by-step program execution through breakpoints.
For ML systems, especially deep learning software sys-
tems, “debugging aims to make it more straightforward
to translate ideas from developer’s head into code”. P6
gave a specific example about “dynamic computational
graph”:

Previously, developers prefer to use PyTorch mainly be-
cause of its support for the dynamic computational graph.

‘dynamic computation’ means that the model is executed
in the order you wrote it. Well, like I am building a
neural network, I would add up layers one by one. Then
each layer has some tradeoffs; for instance, I would like
to add an operator layer implementing normalization. [If

a debugging tool does not support dynamic computational

graph,] I cannot evaluate if this addition is good or not until

the neural network is compiled into a model and real data
go in. The dynamic computational graph allows debugging
on sample data immediately and helps me verify my idea
quickly.
Nevertheless, debugging on the dynamic computational
graph has drawbacks. Once the data volume is extremely
high, computation for each layer takes a long time to
finish. This delays the construction of further layers.
In addition, interviewees also mentioned that creativity
appears to be important in debugging of ML systems
[S11]. Part of the reason appears to be that because
ML systems have an extensive search space for model
tuning.

Interviews pointed at several differences in bugs be-
tween ML systems and non-ML software systems. First,
ML systems do not have as many bugs that reside in the
code as non-ML software (P11) [S12]. Instead, bugs are
sometimes hidden in the data (P10). P1 gave a recent
example that misusing training data and testing data
with intensive overlap results in an incredibly good
performance, but indicating a bug. As P4 suggested,
“generalization of data models is also required to be
taken care of”. Second, ML systems have specific types
of bugs when taking data into account. As P11 stated,
the mismatch of data dimension order between two
frameworks may cause bugs when integrating these
two frameworks. Third, in contrast to non-ML software
systems, a single failed case is hardly helping diagnose
a bug in ML systems. As P13 explained, sometimes,
developers of ML systems find bugs by just “staring at
every line of their code and try to think why it would
cause a bug”.

4.1.4 Software Testing and Quality

Although software quality is important in both ML
and non-ML systems, the practice of testing appears to
differ significantly. One significant difference exists in
the reproducibility of test results. In contrast to non-ML
software systems, the testing results of ML systems is
hard to reproduce because of a number of sources of
randomness [S13]. As P8 explained:

The randomness [in ML systems] complicates testing.
You have random data, random observation order, random
initialization for your weights, random batches fed to your
network, random optimizations in different versions of
frameworks and libraries ... While you can seed the initial-
ization, fixing the batches might come with a performance
hit, as you would have to turn-off parallel batch generation
which many frameworks do. There is also the approach to
freeze or write-out the weights after just one iteration which
solves the weight-initialization randomness.



Another difference exists in the testing methods and
resulting outputs. Testing practice in ML systems usually
involves running an algorithm multiple times and gather
a population of performance measurements [S14]. As P12
explained,

Testing practice for machine learning software mainly
aims to verify the quantitative measures that indicate
performance. However, machine learning algorithms are
stochastic. Thus, we usually use k-fold cross-validation to
do the testing.

As P9 echoed, the testing outputs are expected to be a
range rather than a single value.

The interviewees stated that test case generation for
ML systems is more challenging, compared to non-
ML systems. Automated testing tools are not used as
frequently as non-ML systems [X ¢ S518]. The test dataset
is essential to the quality of test cases. Collecting testing
datasets is labor intensive [v/ ¢/ S15]. If the application
is for general use where correct answers are known to
human users, labeling tasks could be outsourced to non-
technical people outside the organization, as P5 noted.
More details are needed for these automated methods or
tools. However, biases may be introduced to test dataset
through the methods or tools, and consequently, affect
both performance and generalizability. As P8 put it,

Sometimes, we (developers) generate expected results for
the test cases using the algorithms or models constructed
by ourselves. Paradoxically, this may introduce bias because
it is like we define acceptance criteria for our code.

Moreover, generating reliable test oracle is sometimes
infeasible for some ML systems. P6 gave a specific
example in the anomaly detection application context:

Clients gave us a test dataset and told us the dataset
contains labeled anomaly cases. However, we have no way
to know how many anomaly cases exactly there are in
the dataset, because some anomalies may not have been
recognized and labeled in the dataset.

Good testing results cannot guarantee the performance
of ML systems in production [¢/ S17]. The performance
in production to a large extent depends on how similar
the training dataset and the incoming data are (P6).

In ML systems, “too low” and “too high” scores for
performance measures as testing results both indicate
bugs [S16]. P1 gave a recent example of a junior de-
veloper who obtained an F1 score of 99% in his data
model. In fact, after carefully going through the dataset,
an extensive overlap was discovered between training
and testing dataset. Some interviewees reported several
specific tactics in testing ML systems (P13):

We can use a simple algorithm as the baseline, for example,
a random algorithm. If the baseline performs quite well on
our dataset, there might exist bugs in our dataset. If our
algorithm performs worse than the baseline, there might be
some bugs in our code.

4.1.5 Software Maintenance and Configuration Man-
agement

Interviewees suggested that less effort may be required
in the maintenance for ML systems than traditional
software systems [S19]. One reason is that, different
from non-ML software systems, ML systems run into
predictable degradation in performance as time goes
by (P4 and P7). To provide constantly robust results,
ML systems should support “automatic” maintenance.
Once performance degradation occurs, an ML system
is designed to perceive the degradation and trains new
data models in an online/offline way using the latest
emerged data. As P6 suggested,

We sometimes define the so-called “health factors” or
quantitative indicators, of the status of a machine learning
system. They are associated with a specific application con-
text. The indicators help machine learning system perceives
its performance in the specific application context.
Interviewees reported that configuration management

for ML systems involves a larger amount of content
compared to non-ML software [S20]. One reason is that
machine learning models include not only code but also
data, hyperparameters, and parameters. Developing ML
systems involves rapid experimentation and iteration.
The performance of models would vary accordingly.
To find the optimal combination of these parts that
achieve the best performance, configuration manage-
ment is required to keep track of the varying models
and associated tradeoffs, algorithm choice, architecture,
data, hyperparameters. As P4 explained:

It usually happened that my currently trained model
performs badly. I might roll back to the previous model,
and investigate the reasons ... Data in the cloud change
over time, including those we use to train models. Models
might degrade due to the evolving data. We may take a look
at current data and compare them with previous data to see
why degradation happens.

As a result, configuration management for ML systems
becomes more complex compared to non-ML software.
Besides code and dependencies, data, model files, mod-
el dependencies, hyperparameters require configuration
management. The models checkpoints and data would
take a large amount of space. As P8 noted, machine
learning frameworks trade off exact numeric determin-
ism for performance, “the dependent frameworks can
change over time, sometimes radically”. To reproduce
the results, a snapshot of the whole system may be
required.

4.1.6 Software Engineering Process and Management

ML and non-ML systems differ in the processes that are
followed in their development. As P2 suggested, during
the step of context understanding, it is important to com-
municate with other stakeholders about what machine
learning is and is not capable of. P6 mentioned that
some stakeholders might misunderstand what machine
learning is capable of:



They usually overestimate the effect of machine learning
technologies. Machine learning is not a silver bullet; the
effect highly depends on the data they have [v/ v/ S21].
P14 mentioned that data processing is important to

the success of the whole process [ S22], “garbage
in garbage out, it is worth spending the time”. P12
noted that data visualization plays a crucial role in
understanding feature distributions and correlations as
well as identifying interesting trends and patterns out of
the data. As P6 noted, domain knowledge is pivotal in
understanding data features:

However, sometimes domain experts are reluctant to share
their knowledge. They may be afraid of being replaced by
automated software or do not have any accurate reasoning
but intuition.

It is hardly possible to develop a good model in a
single pass (P6). The step aims to find the right balance
through trial and error. Even the best machine learning
practitioners need to tinker to get the models right.
Sometimes, practitioners may go back to the data step
to analyze errors.

As P3, P4, and P5 mentioned, the practitioners create
an API or Web application with the machine learning
model as an endpoint during production. Practitioners
also need to plan for how frequently the model requires
to be retrained with updated data. During the monitoring
step, the performance of models is tracked over time.
Once data changes in a way that invalidates the mod-
els, the software should be prepared to respond to the
mistakes and unexpected consequences.

Interviewees suggested that a significant difference
between management of ML versus non-ML develop-
ment is that the management of ML development lacks
specific and practical guidance [S23]. In contrast to the
development of non-ML software, development of M-
L systems is an iterative optimization task by nature,
“there is more than one right answer” as long as the
quantitative measures meet the expectation (P1). Some-
times, the available data are not sufficient to support
the application context. It is impossible to achieve the
expected quantitative measures no matter how good the
trained model is. P6 explained:

No one knows if the quantitative metrics are achievable
until we finish training our model.

Interviewees also mentioned that the development plan
of ML systems is more flexible than non-ML software
systems. The progress of model training is usually not
in a linear way.

4.2 RQ2. Differences in Work Characteristics

In this section, we discuss differences between ML and
non-ML development in terms of work characteristics.
No common themes emerged from several work feature
topics in our interviews or focus groups (work scheduling
autonomy, task variety, significance, feedback from the job,
information processing, specialization, feedbacks from other-
s, social support, work conditions, ergonomics, experienced
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meaningfulness, experienced responsibility, knowledge of re-
sults). Thus we do not discuss them in this section.

4.2.1 Skill Variety

Interviewees identified two main differences between
ML and non-ML development in terms of skill variety.

First, interviewees noted that developing machine
learning frameworks and applications presented distinct
technical challenges. For example, P10 suggested that, in
addition to programming skills, ML development tends
to require “specialized knowledge in math, information
theory and statistics ” [¢/ 524]. P13 explained the differ-
ences as:

[For the development of non-ML software systems] devel-
opers can write code for a particular business requirement
once they have learned a programming language... [For the
development of ML systems] math and statistics specialized
knowledge is a crucial prerequisite of designing effective
models for a particular business requirement. Nevertheless,
proficient programming skill is still important and could
help with model implementation.

Second, interviewees suggested that a wider variety of
skills is required for ML development [S25], which can
make ML development more challenging if a developer
lacks those skills. As P5 suggested, “in addition to pro-
gramming skills, data analysis skill is required for ML
development”. P10 summarized that the data analysis
skill consists of the abilities to acquire, clean, explore,
and model data. As P6 noted, the huge volume of data in
ML development brings new challenges to data analysis:

In the context of big data, performing statistical data anal-
ysis is not enough. Developers should be able to handle data
analysis for a huge volume of data. For example, developers
need the skills of writing distributed programs for data
analysis and using distributed computing frameworks.

4.2.2 Job Complexity and Problem Solving

Interviews indicated that ML development and non-
ML development present complexity in different aspects.
As P12 suggested, the job complexity of non-ML de-
velopment resides in architecture design and module
partitioning [/ S26]; in contrast, the job complexity of
ML development resides in data modeling [S27]. P14
explained that “the architectures of distinct machine
learning applications are relatively fixed, they usually
consist of several modules, i.e., data collection, data pre-
processing, data modeling, and testing”.

The difference in job complexity leads to the difference
in problem solving. Interviewees mentioned that, for
non-ML development, a clear roadmap usually exists to
produce a good architecture design and module parti-
tioning [¢/ S28]. Developers could then follow a step-by-
step approach to implement each module (P5, P6, P8).
However, for ML development, no clear roadmap exists
to build effective data models (P2). As P6 suggested, the
problem solving process in ML development has more
uncertainties compared to non-ML development:



We do not know what results the data can tell, to
what extent a data model can be improved. We would
try whatever that we think may work. Thus, the search
space becomes quite large, and the workload might explode
accordingly. Sometimes, more workload does result in better
performance.

4.2.3 Task Identity

Interviewees reported few differences in terms of task
identity. One difference is suggested by P4 and P5, who
reported that it is harder to make an accurate plan for
tasks in ML development [¢/ 529]. P4 summarized the
reasons as:

In non-ML software development, the project can be
divided into distinct tasks according to function points.
Developers could easily tell how long it will take to finish
the implementation of a particular function point. However,
in machine learning development, data modeling is an in-
divisible task. To achieve acceptable performance, the search
space is usually quite large. Making an accurate plan for
such a task is hard.

Besides, interviewees noted that ML developers have
less control over their task progress towards target per-
formance (P9, P10) [S30]. Once starting data modeling
in ML development, hard work may not always consis-
tently lead to satisfying results (P4).

4.2.4 Interaction Outside the Organization

Interviewees reported that ML developers face more

challenges when communicating with customers [

S31]. As P2 explained:
It is harder to communicate the project progress for machine
learning development due to the non-linear process of data
modeling... The results of machine learning development
are not straightforward to interpret. For example, it is
difficult to explain why a neural network works for image
processing.

4.3 Survey Results

We summarize the survey results in Table 2. The S-
tatement column shows the statements presented to re-
spondents. The following column indicates the labels
we used to identify statements throughout the paper.
The four Likert Distribution subcolumns present the dis-
tribution of agreement for each group of respondents
(ML practitioners - ML, Non-ML Practitioners - Non-
ML, practitioners of ML Framework/Tool/Library - ML
FTL, and Practitioners of ML Application - ML App). For
the Likert distributions, the leftmost bar indicates strong
disagreement, the middle bar indicates neutrality, and
the rightmost bar indicates the strongest agreement. For
example, most machine learning practitioners strongly
agree with 524.

The P-value column indicates whether the differences
in the agreement for each statement are statistically
significant between ML and non-ML in the first sub-
column, and ML FTL and ML App in the second
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TABLE 3: Interpretation of Cliff’s delta value.

Cliff’s Delta Value Interpretation
[0] < 0.147 Negligible
0.147 < ]| < 0.330  Small

0.330 < |6| < 0.474 Medium

|6] > 0.474 Large

subcolumn. The table is sorted by the p-values with
Benjamini-Hochberg correction in the first subcolumn.
Statistically significant differences at a 95% confidence
level (Benjamini-Hochberg corrected p-value < 0.05) are
highlighted in green.

The Effect Size column indicates the difference between
ML and non-ML in the first sub-column, and the differ-
ence between ML FTL and ML App in the second subcol-
umn. We use Cliff’s delta to measure the magnitude of
the differences since Cliff’s delta is reported to be more
robust and reliable than Cohen’s delta [32]. Cliff’s delta
represents the degree of overlap between two sample
distributions, ranging from —1 to +1. The extreme value
+1 occurs when the intersection between both groups
is an empty set. When the compared groups tend to
overlap, Cliff’s Delta approaches zero. Effect sizes are
additionally colored on a gradient from blue to orange
based on the magnitudes of difference as referring to
the interpretation of Cliff’s delta in Table 3: blue color
means the former group is more likely to agree with the
statement, and orange color means the latter group is
more likely to agree with the statement.

Overall, the results of the survey confirm some dif-
ferences in interviewees’ claims. Based on the observed
statistically significant differences between ML and non-
ML development, we can say with some certainty that:

o Requirements: Collecting requirements in the de-
velopment of ML systems involves more prelimi-
nary experiments, and creates a need for the pre-
dictable degradation in the performance. [¢" S2,
S3]

o Design: Detailed design of ML systems is more
time-consuming and tends to be conducted in an
intensively iterative way. [/ S7]

o Testing and Quality: Collecting a testing dataset
requires more effort for ML development; Good
performance during testing cannot guarantee the
performance of ML systems in production. [v/ v/
S15, v S17]

o Process and Management: The availability of data
usually limits the capability of ML systems; Data
processing tends to be more important to the success
of the whole process. [v' v/ 521, v/ 522]

o Skill Variety: ML development intensively requires
knowledge in math, information theory, and statis-
tics. [v S24]

o Job Complexity and Problem Solving: ML prac-
titioners have a less clear roadmap for building
systems. [/ S528]

o Task Identity: It is much harder to make an accurate
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TABLE 2: Survey Results. Orange cells indicate where the former group (ML practitioners/ML FTL practitioners)
disagrees more strongly with the statement than the latter group (non-ML practitioners/ML App practitioners);
blue cells indicate where the former group agrees more strongly. Green cells represent statistically significant
differences. The number in “()” indicates the size of each group.

Statement
Developing my software requires knowledge in math, information theory and statistics. 524
Detailed design is time-consuming and conducted in an iterative way. S7
Requirements should consider predictable degradation in the performance of software. S3
It is easy to make an accurate plan for the development tasks of my software. 529
Data processing is important to the success of the whole development process. 522
Collecting testing dataset is labor intensive. S15
Developing my software requires frequent communications with the clients. S31
My software is tested by using automated testing tools. S18
Good testing results can guarantee the performance of my software in production. S17
Available data limit the capability my software. S21
Collecting requirements involve a large number of preliminary experiments. S2
A clear roadmap exists to build my software. 528
High level architectural design is relatively fixed. S4
Creativity is important during debugging. S11
My team puts a lot of effort into maintenance of my software. 519
The higher the performance measures are, the better my software is. S16
Architecture design is complicated for my software. S26
Data modeling is complicated for my software. S27
Detailed design is flexible. S6
Requirements of my software are uncertain. S1
Testing involves multiple runs of my software to gather a population of quantitative measures. S14
My coding workload is heavy. S8
T have control over the progress towards the target performance. S30
Code reuse happens frequently across different projects. 59
Debugging aims to locate and fix bugs in my software. S10
Creating my software requires a team of people, each with different skills. 525
Testing results of my software are hard to reproduce. S13
Low coupling in the components of my software is important. S5
Configuration management are mainly for the code. S20
Software engineering management lacks practical guidance for my software. S23
Bugs in my software usually reside in the code. S12

plan for the tasks for ML development. [/ 529]

o Interaction: ML practitioners tend to communicate

less frequently with clients. [+ S31]

The survey results cannot confirm several of intervie-
wees’ claims about differences between ML and non-
ML. For example, requirement is deterministic across ML
system development and non-ML software development
[S1]. One explanation is that although there is uncertain-
ty in aspects of the models that ML developers ship,
requirements themselves are deterministic.

5 DISCUSSION
5.1 Implications

Embracing Uncertainty. As mentioned by our intervie-
wees, uncertainty lies in various aspects of the develop-
ment of ML systems.

First, uncertainty comes from the data as part of
the requirement. Although a development team of ML
system has a target to attain, e.g., building a speech
recognition software with absolute precision, a bunch of
preliminary experiments is required to make sure the
goal is achievable, and the available data suffice for the
target. Understanding application contexts, quick data
visualization and hands-on experimental data modeling
on a small-scale dataset could be helpful to accelerate the
progress of preliminary experiments during requirement
gathering and analysis phase. Instead of trying a number
of tools, it might be wiser for machine learning practi-
tioners to focus on a few tools to learn and use [22].
The exploratory process of preliminary experiments in
ML development is similar to scientific programming [9]
and may benefit from the lessons learned from scientific
programming.

Likert Distributions Cliff’s Delta P-values
ML ML FTL ML ML FTL
Non-ML ML FTL ML App vs. vs. vs. vs.

Non-ML ML App Non-ML ML App
0.45 -0.19 .000 320
0.32 0.18 .000 271
0.29 0.11 .000 433
-0.32 0.03 .000 779
0.26 -0.20 .000 271
0.27 -0.26 .000 .188
-0.29 -0.14 .000 .577
0.26 048 X .000 v .001
-0.23 0.09 001 482
0.22 -0.48 001 v 001
0.20 0.09 .002 577
-0.24 0.07 .002 661
-0.20 0.07 X 017 719
0.12 0.07 .064 719
-0.15 021 .065 .188
0.08 0.19 .068 271
0.10 0.32 .069 v 047
0.07 -0.15 077 471
0.08 0.11 107 459
0.10 0.11 151 482
0.07 0.06 152 719
0.07 0.08 223 .665
0.06 0.02 .265 756
0.06 -0.12 .265 482
0.06 -0.01 .358 943
0.04 0.09 .540 482
0.04 0.04 546 787
-0.01 0.08 861 459
-0.07 -0.14 894 .943
-0.01 -0.20 894 482
-0.01 -0.05 979 787

Second, uncertainty originates in the inherent random-
ness of machine learning algorithms. Machine learning
practitioners should shift their mindset and embrace
uncertainty. For instance, a machine learning algorithm
may be initialized to a random state; random noise helps
to effectively find optimized solution during gradient
descent (stochastic gradient descent). To reduce uncer-
tainty, machine learning practitioners could achieve re-
producibility to some extent by using the same code,
data, and initial random state. Thus, version control
toolchains for code, data and parameters are essential to
achieve reproducibility [5]. However, storing all states
may introduce significant overhead and slow down the
development process. Thus, the effectiveness of such
toolchains is subject to future investigation. In addition,
to evaluate the performance of a machine learning al-
gorithm, practitioners usually randomly split the data
into a training and test set or use k-fold cross-validation.
The performance of a machine learning algorithm should
be reported as a distribution of measures, rather than a
single value, as emphasized by our participants.
Handling Data. As discussed by our interviewees, data
play a vital role in the development of ML systems.
The large quantity of training data can have a tremen-
dous impact on the performance of ML systems. As
confirmed by our participants, data collection becomes
one of the critical challenges for the development of ML
systems. Data collection literature focuses on three lines
of research [31]: data acquisition techniques to discover,
augment, or generate datasets, data labeling techniques
to label individual data points, and transfer learning
techniques to improve existing datasets. Future studies
could integrate existing data collection techniques into
the process of ML development. In addition, existing




data collection techniques tend to be application or
data specific. More effort is needed to generalize those
proposed techniques to various applications. ML prac-
titioners also used distributed platforms to process a
large quantity of data in parallel. Debugging the parallel
computations for data modeling is time-consuming and
error-prone. As illustrated in [16], future studies could
put more effort to facilitate interactive and real-time
debugging for ML systems.

Along with data quantity, quality is also critical to
build a powerful and robust ML system. “Garbage in,
garbage out”, what practitioners obtain from the ma-
chine learning software is a representation of what they
feed into the software. Real-world data is comprising of
missing values, imbalanced data, outliers, etc. It becomes
imperative that machine learning practitioners process
the data before building models. Future research could
develop data visualization tools that give an overview
of the data, help in locating irregularities, enable prac-
titioners to focus on where the data actually needs
cleansing. However, high-quality datasets during devel-
opment cannot ensure the high performance of machine
learning systems eternally. Within a rapidly evolving
environment, a machine learning system degrades in the
accuracy as soon as the software is put in production
[34]. Practitioners need to recognize that there is never
a final version of a machine learning system, which
needs to be updated and improved continuously over
time (e.g., feeding new data and retrain models). Online
feedback and performance measurement of ML systems
are fertile areas for future research.

5.2 Threats to Validity

Internal Validity. It is possible that some of our survey
respondents had a poor understanding of the statements
for rating. Their responses may introduce noise to the
data that we collected. To reduce the impact of this issue,
we included an “I don’t know” option in the survey
and ignored responses marked as such. We also dropped
responses that were submitted by people whose job roles
are none of these: software development, testing and
project management. Two of the authors translated our
survey to Chinese to ensure that respondents from China
could understand our survey well. To reduce the bias
of presenting survey bilingually, we carefully translated
our survey to make sure there is no ambiguity be-
tween English and Chinese terms. We also polished the
translation by improving clarity and understandability
according to the feedback from our pilot survey.

The effect sizes of statistically significant differences
between ML and non-ML development reported in this
work range from negligible to medium. The negligible
effect size indicates that a particular difference between
machine learning and non-machine learning develop-
ment is trivial, even if it is statistically significant. To
mitigate this threat, we did not emphasize those differ-
ences in our results.
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As we selected survey respondents, we sent invitation-
s to a variety of potential respondents that might involve
in different parts of ML ecosystems (ML framework-
s, tools, and libraries, software applications with ML
components). We mixed the responses from those ML
respondents when we studied the differences between
ML and non-ML development. It is possible that differ-
ences exist in the perceptions of these two groups, and
overwhelm ML versus non-ML differences. To prevent
this threat, we compared the differences in distributions
of Likert responses between these two groups.

To recruit respondents from both ML and non-ML

populations, we spread the survey broadly to a wide
range of companies from various locations around the
world. In the beginning of the survey, we articulated
that the purpose of our study is to understand whether
and how machine learning changes software engineering
practices. This description may attract more attention
from a part of the non-ML population, who know about
ML, but ML is not part of their daily work. In addition,
the description may generate a tacit presumption that
machine learning changes software engineering prac-
tices. The presumption may mislead the respondents to
exaggerate the differences they perceived.
External Validity. To improve the generalizability of
our findings, we interviewed 14 interviewees from three
companies, and surveyed 342 respondents from 26 coun-
tries across four continents who are working for various
companies (e.g., Amazon, Alibaba, Baidu, Google, Heng-
tian, IBM, Intel, IGS, Kodak, Lenovo, Microsoft, and
Morgan Stanley) or contributing to open source machine
learning projects that are hosted on GitHub, in various
roles.

We wish though to highlight that while we selected
employees from three Chinese IT companies for our
interviews, we improved the responses from interviews
through focus group discussions that involved more IT
companies, and the surveyed population is considerably
wide. The improved responses from the interviews were
used to bootstrap the statements to rate in our survey.
The survey permitted respondents to add additional
comments whenever appropriate via free-form fields;
looking at the responses in such fields we do not observe
any signs of missing statements.

In addition, some reported claims from our intervie-
wees were not validated through the survey and might
be premature.

6 RELATED WORK

Some prior work provides prescriptive practices for the
development of machine learning systems (e.g., [29]).
Some discuss the realistic challenges and best practices in
the industry, e.g., machine learning model management
at Amazon [33], and best practices of machine learning
engineering at Google [40]. Some investigated machine
learning related questions on Stack Overflow [38]. These
works are based on the experience of the authors and



largely do not contextualize machine learning develop-
ment as a special type of software engineering. In con-
trast, our findings are based on empirical observations
that explicitly focus on the differences between ML and
non-ML development.

Like our work, several researchers have conducted
empirical studies of software engineering for data sci-
ence. Some focus on how data scientists work inside a
company via interviews to identify pain points from a
general tooling perspective [13], and explore challenges
and barriers for adopting visual analytic tools [20]. Other
focus on characterizing professional roles and practices
regarding data science: Harris et al. [17] surveyed more
than 250 data science practitioners to categorize data
science practitioners and identify their skill sets. Kim
et al. interviewed sixteen data scientists at Microsoft to
identify five working styles [21], and supplement Harris
et al.’s survey with tool usage, challenges, best practices
and time spent on different activities [22]. In contrast
to this prior work, our paper studies broad differences
between ML and non-ML development.

Most similar to our study is an empirical investigation
of integrating Al capabilities into software and services
and best practices from Microsoft teams [4]. From their
proposed ML workflow, they identified 11 challenges,
including 1) data availability, collection, cleaning, and
management, 2) education and training, 3) hardware re-
sources, 4) end-to-end pipeline support, 5) collaboration
and working culture, 6) specification, 7) integrating Al
into larger systems, 8) guidance and mentoring, 9) Al
tools, 10) scale, and 11) model evolution, evaluation, and
deployment. The identified challenges emerge across
different software development practices. Our findings
differ from theirs in a number of areas:

o Design. Both studies agree that maintaining mod-
ularization in ML development is difficult. Their s-
tudy [4] summarized the reasons as the low extensi-
bility of an ML model and the non-obvious interac-
tion between ML models. In contrast, we found ML
development places comparable emphasis on low
coupling in components as non-ML development
[S5]. Both studies agree that the rapid iterations exist
in the detailed design of ML systems [+ S7].

o Construction and Tools. Both studies agree that
code reuse in ML development is challenging due to
varying application context and input data. Despite
the challenge of code reuse in ML development, we
found that code reuse happens in ML development
as frequently as in non-ML development [S9].

o Process and Management. Both studies agree that
management of ML development is challenging due
to the involvement of data, and that the availability
of data usually limits the capability of ML systems
[v v S21].

o Configuration Management. Both studies agree that
data versioning is required in ML development.
Despite the necessity of data versioning, we found
that current configuration management activities in
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ML development still focuses on code versioning
[S20]. In addition to data versioning, the earlier
study [4] suggested to keep track of how data is
gathered and processed.

As discussed above, our study confirms some of the
findings reported in Amershi et al.’s work. Different
from Amershi et al.’s work, since we followed the SWE-
BOK and considered work characteristics from applied
psychology domain in our interviews, we recognized
the differences between ML and non-ML development
in other aspects, e.g., requirement gathering, job com-
plexity, problem solving process, and task identity. More-
over, we collected perceptions from broader population
groups, e.g., involving open source practitioners and
professionals from various software industries.

7 CONCLUSION

In this work, we identified the significant differences
between ML and non-ML development. The differences
lie in a variety of aspects including software engineer-
ing practices (e.g., exploratory requirements elicitation
and iterative processes in ML development) and the
context of software development (e.g., high complexity
and demand for unique solutions and ideas in ML
development). The differences originate from inherent
features of machine learning - uncertainty and the data
for use.

To tackle uncertainty, ML practitioners should shift
their mindset, and embrace the uncertainty in prelimi-
nary experiments and the randomness of ML algorithms.
They could learn the lessons from scientific program-
ming, which also involves exploratory processes in the
development. In addition, version control toolchains for
code, data and parameters could play a vital role for
ML practitioners to achieve reproducibility. ML prac-
titioners should also devote sufficient effort to handle
the data for use. Future studies could put more effort
to provide interactive and real-time debugging tools to
facilitate efficient development of ML systems. To deal
with the rapid evolution of data, online feedback and
performance measurement for ML systems are fertile
areas for future research.

In a larger sense, this work represents a step towards
understanding software development not as a homoge-
nous bulk, but as a rich tapestry of varying practices
that involve people of diverse backgrounds across vari-
ous domains. Precise differences may reside in different
kinds of ML architectures. We leave these questions to
future studies.
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