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Abstract—A code context model comprises source code elements and their relations relevant to a programming task. The capture and
use of code context models in software tools can benefit software development practices, such as code navigation and search. Prior
research has explored approaches that leverage either the structural information of code or interaction histories of developers with
integrated development environments to automate the construction of code context models. However, these approaches primarily
capture shallow syntactic and lexical features of code elements, with limited ability to capture contextual and structural dependencies
among neighboring code elements. In this paper, we propose GNNCONTEXT, a novel approach for predicting code context models
based on Graph Neural Networks. Our approach leverages code representation learning models to capture both the syntactic and
semantic features of code elements, while employing Graph Neural Networks to learn the structural and contextual information among
neighboring code elements in the code context models. To evaluate the effectiveness of our approach, we apply it to a dataset
comprising 3,879 code context models that we derive from three Eclipse open-source projects. The evaluation results demonstrate that
our proposed approach GNNCONTEXT can significantly outperform the state-of-the-art baseline for code context prediction, achieving
average improvements of 62.79%, 56.60%, 73.50% and 81.89% in mean reciprocal rank, top- 1, top-3, and top-5 recall rates,
respectively, across predictions of varying steps. Moreover, our approach demonstrates robust performance in a cross-project
evaluation setting. Our code is publicly available at https://github.com/ZXXYy/CodeContextModel.
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1 INTRODUCTION

D EVELOPERS spend a substantial amount of time navi-
gating and understanding the relevant code of a soft-

ware system when they perform software programming
tasks. Meanwhile, in their mind, they implicitly form code
context models, which consist of source code elements and re-
lations between those elements relevant to specific tasks [1].
The explicit capture and use of even a portion of code
context models in software tools can benefit developers and
software development projects [2], such as supporting code
search activities [3], facilitating code recommendations [4],
[5], and improving the quality of code changes made to
software systems [6]. Fig. 1a shows an example code context
model of a bug-fixing task in the Mylyn project.

Previous studies propose a series of tools to help devel-
opers explicitly capture code contexts during programming
tasks, such as Concern Graphs [7], Code Bubbles [8], and
Code Basket [9], as well as leverage structural informa-
tion in code or interaction histories of developers with
integrated development environments (IDEs) to enable the
automatic formation of code context models [4], [5], [10],
[11]. In a most recent study, Wan et al. [11], [12] propose an
approach that utilizes both structural information in code

• Xiaoye Zheng, Zhiyuan Wan, Shun Liu, Kaiwen Yang, and Xiaohu
Yang are with the State Key Laboratory of Blockchain and Data Secu-
rity, Zhejiang University, Hangzhou 310013, China E-mail: {xiaoyez,
wanzhiyuan, liushun0311, kwyang, yangxh}@zju.edu.cn.

• David Lo is with the School of Information Systems, Singa-
pore Management University University, Singapore 188065. E-mail:
davidlo@smu.edu.sg.

• Zhiyuan Wan is the corresponding author.

Manuscript received; revised.

and the interaction histories of developers for proactively
formation of code context models. The approach learns
abstract patterns of how developers explore structurally
connected code elements during programming tasks in a
software system, and leverages these learned patterns to
predict code elements in future code context models based
on the the current interactions of developers with IDEs. The
learned patterns, represented as directed graphs, leverage
stereotype roles [13] to generalize the syntactic behaviors
of code elements in their nodes, while capturing structural
dependencies between these code elements, such as calls and
declares, in their edges. Nonetheless, these patterns capture
shallow syntactic and lexical information of code elements
in their nodes, as well as limited contextual and structural
information between neighboring code elements through
their edges.

In this paper, we propose GNNCONTEXT, a novel ap-
proach for predicting code context models based on Graph
Neural Networks (GNNs). Our approach uses code repre-
sentation learning models to capture both the syntactic and
semantic features of code elements in code context mod-
els, while utilizing GNNs to learn structural and contex-
tual interdependencies among neighboring code elements.
Specifically, GNNCONTEXT constructs abstract syntax trees
(ASTs) and call graphs (CGs) for the relevant code within a
code context model to capture both syntactic and semantic
information. Next, program slicing [14] is performed from
the point of interest (i.e., the seed node in the code context
model) to identify candidate nodes for prediction, thereby
expanding the code context model. The nodes in the ex-
panded model are then embedded into low-dimensional
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vectors, which serve as input to the GNN model. To enhance
learning, contrastive learning loss is applied in the GNN
model to generate distributed representations of the nodes.
Consequently, GNNCONTEXT leverages the well-trained
GNN model to predict future code elements for a given task,
based on the initial code context model as input.

To evaluate the effectiveness of our approach, we curate
a dataset of 3,879 code context models from the interac-
tion histories of three Eclipse open-source projects, Mylyn1,
Platform2, and Plug-in Development Environment (PDE)3,
spanning 12, 11 and 8 years of history, respectively. The
experimental results demonstrate that GNNCONTEXT sig-
nificantly outperforms the state-of-the-art baseline [11] on
our dataset, achieving average improvements of 62.79%,
56.60% %, 73.50% and 81.89% in mean reciprocal rank, top-1,
top-3, and top-5 recall rates, respectively, across step-1, step-
2, and step-3 predictions. GNNCONTEXT also outperforms
existing SOTA approaches for bug localization [15] and API
recommendation [16] when evaluated on our dataset. In
addition, our approach exhibits robust performance in cross-
project settings, with cross-project code context predictions
even outperforming within-project predictions, particularly
when the training data originates from projects with exten-
sive and highly relevant historical data.

In summary, we make the following contributions:
• We propose a novel approach to predicting code context

models, which integrates code representation learning
models to capture both the syntactic and semantic
information of code elements in code context models,
and GNNs to learn the structural and contextual infor-
mation among neighboring code elements. Our code
is publicly available at https://github.com/ZXXYy/
CodeContextModel.

• We demonstrate that our approach can predict code
context models effectively, outperforming the state-of-
the-art baseline in within-project settings, and achiev-
ing robust performance in cross-project settings.

• We provide a dataset comprising 3,879 code context
models to facilitate future investigations by others.4

The dataset builds upon prior work [11], extending it
with the inclusion of two additional projects and an
expansion of 1,992 code context models.

The remainder of this paper is organized as follows.
We begin by describing preliminaries and motivation in
Section 2. We then describe our approach in Section 3, and
evaluate the effectiveness of the approach for code context
prediction in Section 4. Next, we discuss the implications
of results in Section 5, and threats to validity in Section 6.
Finally, we describe related work in Section 7, before con-
cluding in Section 8.

2 PRELIMINARIES AND MOTIVATION

2.1 Usage Scenario

As software developers work on programming tasks, they
spend considerable time navigating code to understand

1. https://eclipse.dev/mylyn/
2. https://wiki.eclipse.org/Platform
3. https://www.eclipse.org/pde
4. https://zenodo.org/records/13790748

relevant parts of the codebase, forming code context models
in their mind that represent source code elements and
their relationships [1], [11]. In large-scale software projects,
where developers must navigate numerous source code
files to handle their programming tasks, the complexity
of programming tasks significantly increases [17], [18].
Consequently, the complexity of programming tasks results
in more intricate code context models, which, in turn, raise
the cognitive load for developers. As a result, code context
prediction becomes especially valuable when code context
models are distributed across multiple source files in large
codebases, as it can help reduce the cognitive burden and
enhance the productivity of the developers.

Fig. 1 presents a typical usage scenario in which code
context prediction approaches assist software practitioners
in performing programming tasks. The task aims to fix
a bug report 1691235 as recorded in the Mylyn project.
During the bug-fixing task, a developer interacts with the
IDE and navigates through the source code to understand
the relevant code of the task. As a result, the developer
locates two code elements potentially relevant to the task –
a class code element, AbstractRepositoryTaskEditor,
as well as a method code element, createLabel, which
are captured by code context prediction approaches as an
initial code context model as shown in Figure 1a. By learning
patterns from interaction histories as shown in Fig. 1b, code
context prediction approaches proactively form a future
code context model (Fig. 1c) by recommending likely code
elements of interest based on the initial code context model.

2.2 Motivating Example
We illustrate how the state-of-the-art (SOTA) approach [11]
works for code context prediction in the usage scenario
in Fig. 1, and list our observations to motivate our approach.
The SOTA approach enables code context prediction by
utilizing the topological patterns of code elements learned
from the interaction histories of a project. Specifically, the
approach first learns abstract topological patterns based on
the stereotype roles of code elements, and then applies these
learned patterns to predict code context models for a given
task through graph pattern matching.

On the one hand, the SOTA approach leverages stereo-
type roles [13] to summarize the syntactic behaviors of code
elements in code context models, learning patterns from the
generalized code elements assigned with stereotype roles
for code context prediction. However, we observe that these
stereotype roles are derived from a set of predefined rules,
which capture shallow syntactic and lexical information of
code elements when summarizing the behavior of methods
and classes. These pre-defined rules encompass 17 stereo-
type roles for method elements, as well as 13 stereotype
roles for class elements. For instance, as shown in Fig 1d,
the createLabel method takes PROPERTY as its primary
stereotype role, as it returns the local variable label (Rule
1). Additionally, it is labeled with COLLABORATOR as its
secondary stereotype role, considering that all of its pa-
rameters (composite and attribute) are non-primitive
variables (Rule 2). The observation suggests that capturing
deeper syntactic and semantic information of code elements

5. https://bugs.eclipse.org/bugs/show bug.cgi?id=169123
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Fig. 1: Usage scenario of code context prediction.

may enhance the performance of code context prediction
beyond what is achieved by the current SOTA approach.
Consequently, we consider adopting code representation
learning models in our approach.

On the other hand, the SOTA approach learns abstract
patterns represented as directed graphs, facilitating code
context prediction through pattern matching. In these pat-
terns, nodes correspond to stereotype roles, while edges cap-
ture the syntactic relationships between code elements, such
as declares and calls. However, we observe that the structural
interdependencies reflected by these edges do not account
for structural interdependencies of multi-hop neighboring
code elements. The observation suggests that incorporating
more comprehensive structural and contextual information
from multi-hop interdependencies may further improve the
performance of code context prediction beyond the current
SOTA approach. As a result, we consider utilizing GNNs to
capture both structural and contextual information among
code elements of code context models in our approach.

2.3 Graph Neural Networks
GNNs constitute a specialized family of deep learning mod-
els specifically tailored for graph-structured data, such as
the Graph Convolutional Network (GCN) [19], Relational
GCN (RGCN) [20], GraphSAGE [21] and Graph Atten-
tion Network (GAT) [22]. GNN models usually leverage a
neighborhood aggregation mechanism, whereby the repre-
sentation of each node in a graph is progressively refined
through the incorporation of information from its neigh-
boring nodes. The mechanism allows GNNs to effectively
capture and leverage the underlying structural interdepen-
dencies of graph data.

In the realm of software engineering, a variety of tasks
require capturing the intricate structural interdependencies
among elements in code, aiming at better comprehending
the program semantics. Due to this natural alignment,
GNNs are particularly well-suited to tackle such tasks,
demonstrating significant potential across a diverse range of
tasks, such as code completion [23], [24], code summariza-
tion [25], vulnerability detection [26], [27], [28], [29], [30],

[31], code summarization [25], [32], and code recommenda-
tion [33], [34]. For instance, RepoHyper [23] employs Graph-
SAGE [21] to encode the semantic code graph structure for
solving repository-level code completion tasks. MVD+ [26]
proposes a flow-sensitive GNN to detect memory-related
vulnerabilities. Ling et al. [33] utilize GNNs to capture high-
order collaborative signals from API calls and recommend
API usage for programmers. LeClair et al. [25] use GCN
together with an RNN-based encoder to embed ASTs for
code summarization.

3 OUR APPROACH

In this section, we present the architecture design of GN-
NCONTEXT. Fig. 2 gives its pipeline overview consisting of
two phases: the training phase and the prediction phase.

The training phase takes as input the initial code context
models of programming tasks as well as their relevant
source code, and produces a well-trained GNN model for
code context prediction, which consists of three steps. In
Step 1, our approach builds ASTs and CGs of source code
to capture the syntactic and semantic information, and con-
ducts program slicing [14] to generate expanded code context
models from initial code context models (Section 3.1). In
Step 2, our approach transforms each code element in
expanded code context models into low-dimensional vec-
tor representations (Section 3.2). In Step 3, our approach
makes use of both contrastive learning and GNNs to learn
contextual and structural features of code context models
(Section 3.3)

In the prediction phase, our approach takes as input the
initial code context model of a given task, and generates
the expanded code context model (Step 1), and conducts
node embedding for the expanded model (Step 2) as it does
in the training phase. The expanded code context model
and its corresponding vector representations are then fed
into the well-trained model as graph input for code context
prediction.
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Fig. 2: GNNCONTEXT overview.

3.1 Program Analysis and Slicing
GNNCONTEXT first conducts intraprocedural and interpro-
cedural program analysis to build ASTs and CGs from the
relevant source code of programming tasks. AST reflects the
syntax structure of source code files, while CG provides the
control-flow information across functions in the source code
files. As inspired by previous studies [35], [36], combining
diverse code representations can be beneficial for deep
learning models to capture the program semantics.

GNNCONTEXT then adopts program slicing [14] to
perform backward and forward slicing in source code to
generate expanded code context models, which starts from
the code elements of interest (code elements in the initial
code context model), along with the edges in ASTs and
CGs of relevant source code. Previous studies indicate that
source code files usually contain numerous code elements,
among which, developers only access a few structurally
connected or semantically relevant code elements to form
code context models [1], [11]. Consequently, the program
slicing considers the code elements d steps (d = 1, 2 and
3) away from the code elements in the initial code context
models. Moreover, our approach labels the nodes in the
expanded code context model with three types: (1) Seed
context nodes, which exist in the initial code context model,
serving as the input of a prediction model, (2) Non-seed
context nodes, which exist in the code context model but not
in the initial code context model, serving as the ground truth
for a prediction model, and (3) Non-context Nodes, which do
not exist in the code context model. Note that context nodes
represent the nodes in a code context model, consisting of
seed context nodes and non-seed context nodes.

3.2 Node Embedding
Node Collapsing. We observe a substantial imbalance in the
numbers of Context vs. Non-Context nodes in expanded code
context models, especially for the field nodes, which tend
to have relatively less semantic information as compared
to method and class nodes. Consequently, GNNCONTEXT
collapses the field nodes that are declared in each class node
into a single node. Note that the field nodes representing

lambda expressions or anonymous inner classes are not
collapsed in our approach, as they may contain crucial
semantic information.
Code Embedding. GNNCONTEXT adopts the code repre-
sentation learning models to generate embedding for the
code snippet of each code element. We begin by tokenizing
the code snippet of the code element into multiple token
sequences, padding the classification token ([CLS]) at the
start of the sequences as a start marker. Next, we employ the
BGE embedding model [37], a language embedding model
based on the transformer architecture that incorporates code
as a textual sequence in its training data, to encode these
token sequences. We then extract the embedding of the
[CLS] token, which captures the global semantics of the
code snippet, as the final embedding of the code snippet.

3.3 Graph Learning

GNNCONTEXT designs a graph learning architecture based
on RGCN, utilizing contrastive learning loss to code ele-
ments in a code context more similar in the embedding
space. It learns both the features of code elements and their
structural interdependencies to capture the semantic and
contextual information within code context models.
Model Architecture. In our architecture, we update the
node embedding hv of each node v as

hl+1
i = σ

W
(l)
i h

(l)
i +

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j

 , (1)

where h(l)
i denotes the representation of node i at layer l, Nr

i

denotes the set of neighbor indices of node i under relation
r ∈ R, W (l)

i denotes the learnable weight for node i at layer
l, σ denotes the activation function and ci,r is a normal-
ization constant. The node embedding vectors serve initial
hidden representation h(0). The initial edge representation
for edge r can be encoded by basis decomposition as

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b , (2)
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where V
(l)
b is a set of learnable basis vectors and and a

(l)
rb

is also the learnable scalar weight specific to edge type and
basis. Furthermore, we add inverse edges and assign differ-
ent weight parameters according to different edge types, to
capture contextual information of code context models.

To stabilize training, we add a self-loop for each node
in the graph neural network. This maintains a consistent
information flow and ensures that each node retains its
features in the updated representation. With the help of the
graph learning, contextual information can be captured and
sensitive low information is given more attention. Moreover,
we stack multiple graph convolutional layers to enable the
GNN model to learn hierarchical and increasingly abstract
representations of nodes, capturing complex graph struc-
tures and patterns.
Model Training. We further utilize contrastive learning loss
to optimize the parameters of the GNN model, aiming
at capturing the intricate differences between Seed Con-
text Nodes S, Non-Seed Context Nodes P , and Non-Context
Nodes N in a code context model R. The contrastive learn-
ing loss consists of two loss functions, as inspired by a prior
study [38]: (i) Seed-positive pair loss function Lpos, which
aims to maximize the semantic similarity of S and P :

Lpos(R) =
∑

(s,p)∈S×P

max(0,mpositive − sim(vs, vp)) (3)

and (ii) Seed-negative pair loss function Lneg , which aims
to minimize the semantic similarity of S and N :

Lneg(R) =
∑

(s,n)∈S×N

max(0, sim(vs, vn)−mnegative) (4)

where vi denotes the vector embedding of node i as output
by the GNN model. sim(vi, vj) is the cosine similarity be-
tween two vector embeddings. mpositive and mnegative are
the hyper-parameters for the two contrastive loss functions.
To this end, the contrastive learning loss function for a mini-
batch R is

L =
∑
R∈R

(Lpos(R) + Lneg(R)) (5)

Overall, our customized loss directly enforces the relative
distance between positive and negative pairs by calculating
their similarity with seeds.

3.4 Code Context Model Prediction
In the prediction phase, GNNCONTEXT uses the well-
trained model built in the training phase to predict code
elements in the future code context model of a given task
based on its initial code context model.

Specifically, our approach first generates an expanded
code context models based on the initial code context model
through program analysis and slicing (Section 3.1). Next,
our approach embeds the nodes in the expanded code
context model into low-dimensional vectors through code
representation learning models (Section 3.2). Finally, our ap-
proach feeds the well-trained GNN model with the expanded
code context model to label the non-seed nodes as positive or
negative in the future code context model. For each non-seed
node n in the expanded code context model, we calculate its

similarity score SIMn as compared to all seed nodes S in the
expanded code context model:

SIMn =
1

|S|
∑
s∈S

sim(vn, vs) (6)

where sim(vi, vj) is the cosine similarity between two em-
beddings learned by the well-trained GNN model. With
respect to the similarity scores of non-seed nodes, our
approach labels top k non-seed nodes as positive, and the
remaining as negative. Consequently, the positive nodes are
predicted as code elements in the future code context model.

4 EVALUATION

In this section, we focus on evaluating the effectiveness of
GNNCONTEXT for code context prediction by answering
the following research questions:

• RQ1: How does GNNCONTEXT perform in code con-
text prediction, compared with the state of the art?

• RQ2: How does GNNCONTEXT perform in a cross-
project setting?

• RQ3: To what extent do different design choices affect
the performance of GNNCONTEXT?

• RQ4: What is the impact of different hyperparameters?
• RQ5: How do different design choices of the initial code

context models affect prediction performance?

4.1 Dataset
4.1.1 Code Context Model Formation
To experiment with the prediction of code context models,
we need a dataset of such code context models. To this
end, we form a dataset of code context models6 using the
interaction histories captured as developers work with three
open-source Eclipse projects, Mylyn, Platform and PDE.
We chose to use the three projects as the data source for
our investigations because (1) the three projects are widely
used in previous studies on code edit recommendations,
e.g., [4] and [39]; and (2) the interaction histories span
over 12, 11 and 8 years in the development of Mylyn,
Platform and PDE, respectively. The Eclipse Mylyn tool7

records interaction histories as developers work on a code
base. Each interaction history includes a record of the code
elements that have been viewed or edited by a developer
during a programming task. In line with prior work [40],
which suggests that both editing and viewing histories of
developers contribute to code edit recommendation, we
included code elements edited or viewed by developers
in the code context models, as recorded in the interaction
histories in our dataset. The Eclipse Mylyn tool enables one
or more interaction histories to be associated with each task
performed by developers on a system, and stored with the
task recorded in the Eclipse Bugzilla system.

Based on the interaction histories, we curated a dataset
of code context models, by following the process aligned
with that in Wan et al.’s work [11]. Specifically, for each
interaction history, we first divided every two consecutive
interaction events into separate working periods, provided

6. https://zenodo.org/records/13790748
7. https://www.eclipse.org/mylyn

https://zenodo.org/records/13790748
https://www.eclipse.org/mylyn


6

the time gap between their occurrences exceeded three
hours. Next, we extracted class, method, and field code
elements from the “selection” and “edit” events in the inter-
action history of each working period. We further identified
the structural dependencies (i.e., declares, calls, inherits, im-
plements) between code elements by running Doxygen [41]
on the corresponding snapshots of code repositories. Conse-
quently, the extracted code elements constitute the nodes of
the code context model for each working period, while the
identified structural dependencies form the edges. Further
details are provided in Appendix A.

As shown in Table 1, our dataset consists of 3,879
code context models, including 3,126, 446 and 307 from
the Mylyn, Platform, and PDE projects, respectively. The
statistics in the Code Context Model (CCM) column show that
the sizes of code context models vary across projects, with
a median of 7, 11 and 4 nodes for the Mylyn, Platform,
and PDE projects, respectively. The code context models
are comprised of multiple connected components, with a
median of 3, 4 and 2 connected components for the Mylyn,
Platform, and PDE projects, respectively, indicating that
developers worked with multiple clusters of structurally
connected code elements during programming tasks. The
Connected Component (CC) column reports statistics about
the range of sizes of the 13,275, 3,099 and 895 connected
components that comprise the code context models of the
Mylyn, Platform, and PDE projects. The statistics show that
the average diameters of connected components are 0.94,
0.83 and 0.87 for the Mylyn, Platform, and PDE projects,
respectively, indicating that the developers did not navi-
gate code elements by following structural dependencies in
depth during programming tasks.

4.1.2 Quality Assessment
Our dataset includes interaction histories of developers
from three projects, covering a broad spectrum of pro-
gramming tasks, namely bug fixing and feature enhance-
ment [42], some of which have been utilized in previous
studies on code edit recommendations for programming
tasks [4] and software evolution tasks [39]. Specifically, out
of the 3,126 code context models for the Mylyn project,
1,181 (37.8%) are related to feature enhancement, while 1,945
(62.2%) are associated with bug fixing. Out of the 446 code
context models for the Platform project, 61 (13.6%) corre-
spond to feature enhancement and 385 (86.3%) to bug fixing.
As for the PDE project, which consists of 307 code context
models, 92 (30%) are attributed to feature enhancement and
215 (70%) to bug fixing.

Furthermore, we quantified the practical value of the
predicted code elements in the code context models of our
dataset by examining whether these elements were edited,
the number of times they were viewed, and the duration de-
velopers spent viewing them, as recorded in the interaction
histories. As shown in Table 2, 54.06%, 44.83%, and 54.08%
of the code elements in the context models were edited
at least once for the Mylyn, Platform, and PDE projects,
respectively. For the remaining viewed-only code elements,
the average viewing durations were 108.75s, 108.76s, and
107.66s, with average view counts of 1.83, 1.77, and 1.65
for the Mylyn, Platform, and PDE projects, respectively. The
statistics suggest that the dataset we consider as ground

truth closely reflects the actual interactions of developers,
highlighting the practical relevance of predicting code ele-
ments in the ground truth.

4.1.3 Preprocessing
In practice, a developer may start code search and navi-
gation from the middle of a task. To experiment with our
approach in a practical scenario, we followed the steps
below to preprocess the code context models in our dataset:
Seed Generation. In this step, we aimed to generate a set of
seed nodes for each code context model from the dataset R,
representing the corresponding initial code context model,
as illustrated in Algorithm 1. Specifically, for each code
context model R ∈ R, we created a seed set S for it with the
prediction step d as input. Specifically, considering develop-
ers may start navigating code elements in an arbitrary order
during programming tasks, we randomly chose a subset of
size minus d code elements from R, where size denotes
the number of nodes in R. This process yields an initial
code context model R̂ for R, where the chosen elements
serve as the seed nodes for experimenting with code context
prediction.
Code Context Model Expansion. We followed the step of
program analysis and slicing in the training phase of GN-
NCONTEXT (Section 3.1) to expand the initial code context
models R̂. Specifically, we first performed backward and
forward slicing along the AST and CG edges from the code
elements in the initial code context models with depth d,
where we chose d to be 1, 2 and 3. As a result, we generated
three expanded code context models, R1, R2 and R3, for
each initial code context model R̂ generated from the code
context model R in our dataset R.
Node Labeling. Based on the resulting seed nodes R̂ of each
code context model R in our dataset, we further labeled the
nodes in the corresponding expanded code context models.
Specifically, for each expanded code context model R1, R2

or R3, we labeled the corresponding seed nodes within R̂
as “seed”, (R− R̂) as “positive”, and the remaining nodes as
“negative”.

Given code duplication in training and test sets may dis-
tort experimental results in machine learning models [43],
[44], we measured the code duplication in our dataset as fol-
lows: (1) We identified similar code elements in each project
using BLEU scores, grouping those with a BLEU score above
0.9; (2) We detected duplicate code context models across the
training and test sets using Jaccard similarity, considering
two code context models as duplicates if their coefficient
exceeded 0.7, a commonly used threshold indicating strong
similarity while allowing minor variations [45]. As a result,
we identified 6, 1 and 0 duplicate code context models
between training and test sets for the Mylyn, PDE, and
Platform projects, respectively, accounting for 0.96%, 1.6%,
and 0% of the training samples, suggesting a neglectable
impact of code duplication on the experimental results.

4.2 Metrics
To measure the performance of code context prediction, we
choose two metrics that are widely used in previous studies
(e.g., [46], [47], [48]), Mean Reciprocal Rank (MRR), and Top-
k Recall (R@k).
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TABLE 1: Dataset statistics.

Project (# CCM / # CC) Code Context Model (CCM) Connected Component (CC)
# Nodes # Edges # CC # Nodes # Edges Diameter

Mylyn (3,126 / 13,275)

Min 2 1 1 1 0 0
Max 71 73 68 30 61 10
Median 7 4 3 2 1 1
Mean 10.54 8.09 4.25 2.48 1.91 0.94
SD 9.79 9.81 4.20 2.45 3.79 1.06

Platform (446 / 3,099)

Min 2 1 1 1 0 0
Max 119 135 80 63 117 11
Median 11 7 4 1 0 0
Mean 17.16 13.74 6.95 2.47 1.98 0.83
SD 17.14 17.85 7.95 3.48 5.74 1.19

PDE (307 / 895)

Min 2 1 1 1 0 0
Max 41 48 15 27 48 7
Median 4 2 2 2 1 1
Mean 6.83 5.06 2.92 2.34 1.74 0.87
SD 6.60 7.15 2.74 2.35 3.75 1.05

TABLE 2: statistics of code elements in dataset.

Project # Elements # Edited Viewed-only Elements
Elements Min Max Median Mean SD

Mylyn 26,976 14,583 # Views 1 69 1 1.83 2.61
Duration (s) 0 11,070 6 108.75 569.18

Platform 5,925 2,656 # Views 1 53 1 1.77 2.76
Duration (s) 0 9,983 6 108.76 508.74

PDE 1,653 894 # Views 1 27 1 1.65 1.81
Duration (s) 0 7,830 5 107.66 524.78

Algorithm 1 Seed generation.

Input: Dataset of code context models R; prediction step d;
Output: Initial code context models R̂

1: for R ∈ R do
2: size = node number(R)
3: if size > d then
4: S = extract subgraphs(R, size− d)
5: R̂ = random select(S)
6: R̂ = R̂ ∪ {(R, R̂)}
7: end if
8: end for

1) MRR denotes the average reciprocal ranks of the cor-
rectly predicted code elements given the initial code
context models R̂, as defined in Equation 7:

MRR =
1

|R̂|

|R̂|∑
i=1

1

Ranki
(7)

where Ranki denotes the rank of the first correctly
predicted code elements for the i-th initial code context
model R̂.

2) R@k evaluates the effectiveness of code context predic-
tion in recalling positive nodes from the top k candidates
in the prediction results, where k=1, 3 and 5, which is
calculated as Equation 8:

R@k =
1

|R̂|

|R̂|∑
i=1

ϕ(Ranki ≤ k) (8)

where ϕ is an indicator function that equals 1 if the
correctly predicted code elements for the i-th initial
code context model exist in the top-k results, i.e., its
rank Ranki is less than or equal to k. Note that for
2-step and 3-step predictions, the R@k metric measures
whether any code elements from the initial code context
models appear in the top-k results. For example, in the
3-step prediction, R@1 is 1 if any code element of the
three positive ones, as labeled in the expanded code
context model, ranks first in the prediction results.

4.3 Workflow in Evaluation

Figure 3 illustrates the workflow of 1-step cross-file code
context model prediction of GNNCONTEXT, exemplified
through a feature enhancement task8, with its code context
model R comprising two connected components distributed
across two source code files. Our approach first generates
the seed set S, and expands S to a depth of d = 1,
resulting in the expanded code context model R1. Among
the nodes in R1, nodes 0, 1, and 2 are labeled as “seed”,
node 3 as “positive”, and the remaining nodes as “negative”.
Using R1 as input, our approach computes the embedding
similarities between the seed nodes and the other nodes,
and subsequently ranks the nodes based on the similari-
ties. Following model inference, node 3 is identified as the
correct prediction with a rank of 2. Consequently, R@1 is
ϕ(Rank ≤ 1) = 0, R@3 is ϕ(Rank ≤ 3) = 1, and MRR is

1
Rank = 0.5.

8. https://bugs.eclipse.org/bugs/show bug.cgi?id=376308

https://bugs.eclipse.org/bugs/show_bug.cgi?id=376308
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Fig. 3: Example task to illustrate the workflow of code context prediction.

4.4 Baselines
To comprehensively evaluate the effectiveness of GN-
NCONTEXT, we compare it against three baseline ap-
proaches: the SOTA specifically designed for code context
prediction [11], as well as leading SOTA approaches for
bug localization [15], and API recommendation [16]. We
considered approaches for bug localization and API rec-
ommendation because they share the objective of locating
code relevant to a specific programming task, which aligns
closely with code context prediction. We detail the adapta-
tions made to facilitate the comparison as follows.
Code Context Prediction: We adopted the SOTA approach
for code context prediction proposed by Wan et al. [11] as
a baseline. Specifically, we conducted a direct comparison
between the approach and GNNCONTEXT with no adapta-
tion, given their alignment in the experimental setting.
Bug Localization: We adopted SemanticCodeBERT [15] as
a baseline, which integrates semantic flow graphs with pre-
trained models for bug localization. For a fair comparison,
we used the pre-trained model of SemanticCodeBERT as
the base, and fine-tuned it on our dataset using Momentum
Contrastive Learning. Specifically, seed context nodes were
used as input, non-seed context nodes as positive samples,
and negative samples were randomly selected non-context
nodes following the Memory Bank mechanism of Semantic-
CodeBERT.
API Recommendation aims to assist developers in selecting
appropriate API methods or classes based on the current
code context, typically with a focus on external library
usage. The objective differs from code context prediction,
which emphasizes suggesting the structural or semantic
elements that developers are likely to view or edit next in
their local codebase. To support API recommendation, prior
studies have leveraged techniques such as frequent pattern
mining [49], collaborative filtering [50], and more recently,
learning-based models including LUPE [51] and GAPI [16],
which represent the state of the art in this area. Given
that the dataset preprocessing implementation of LUPE is

not publicly available, we selected GAPI as the baseline
of API recommendation for comparison. GAPI formulates
API recommendation as a graph-based learning problem,
and uses GNNs to capture high-order collaborative signals
from API call interactions and project structures. To enable
a fair comparison in our code context prediction setting, we
made two adaptations to GAPI. First, we employed a k-step
expanded graph to represent structural relationships among
code elements in the initial context. Second, we randomly
selected one code element as a seed node and treated the
remaining context nodes as positive samples.

4.5 Implementation

We implemented GNNCONTEXT in Python using Py-
Torch [52], trained in a batch-wise fashion until converg-
ing and the batch size is set to 32. The number of the
maximum epoch is set to 50. The dimension of the vector
representation of node embedding is set to 1024. The hidden
layer dimension of the graph neural network is set to 1024.
Adam [53] optimization algorithm is used to train the GNN
model with the learning rate of 1e-6. Our experiments are
conducted on a machine with 64 cores of 2.9GHz Intel(R)
Xeon(R) Gold 6226R CPU and 1 GeForce RTX 3090 24GB
GPU installed with Ubuntu 20.04 with CUDA 11.1. The
training of models costs approximately 20, 49 and 282 hours
for 1-step, 2-step, and 3-step predictions, respectively. The
inference of models costs 0.016, 0.019, and 0.020 seconds on
average for 1-step, 2-step, and 3-step predictions, respec-
tively. The average inference time of less than 0.02 seconds
demonstrates the feasibility of our approach for real-time
use.

4.6 Experiments

4.6.1 RQ1: Effectiveness

To evaluate the effectiveness of GNNCONTEXT, we compare
it with the SOTA approach [11].
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TABLE 3: Evaluation results of GNNCONTEXT (with and without optimization) compared with three baselines.

Approach 1-Step Prediction 2-Step Prediction 3-Step Prediction

MRR R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR R@1 R@3 R@5

SOTA proposed by Wan et al. [11] 0.291 0.230 0.306 0.349 0.397 0.348 0.394 0.416 0.343 0.285 0.353 0.379
SemanticCodeBERT [15] 0.292 0.205 0.303 0.371 0.252 0.119 0.305 0.380 0.250 0.133 0.282 0.352
GAPI [16] 0.317 0.205 0.433 0.529 0.529 0.377 0.634 0.714 0.480 0.346 0.533 0.673
GNNCONTEXT w/o node collapsing 0.529 0.419 0.573 0.653 0.563 0.458 0.615 0.686 0.503 0.369 0.570 0.660
GNNCONTEXT w/ node collapsing 0.560 0.449 0.610 0.681 0.612 0.510 0.660 0.753 0.509 0.393 0.558 0.646

Setup. Regarding the dataset, we utilized the code context
models from the Mylyn project, which is aligned with Wan
et al.’s work [11]. Given the inherent sequential nature of
our dataset, we initially arranged the Mylyn dataset in
chronological order prior to partitioning. Subsequently, we
allocated the first 80% of the dataset for training purposes,
and reserved the final 20% for testing. We further subdi-
vided the training set into a training subset and a validation
subset with a 9:1 ratio during the training phase of the GNN
model.

We implemented the SOTA approach and explored its
parameters to replicate the performance levels reported in
the original work [11]. In particular, we focused on the
MinSupp parameter, which represents the minimum support
threshold for pattern discovery. After evaluating a range
of values between 0.01 and 0.1, we identified that setting
MinSupp to 0.015 produced a set of 144 abstract patterns,
which closely aligns with the 142 patterns reported in the
original work.

Furthermore, we considered two variations of our ap-
proach in the comparison: (1) GNNCONTEXT without node
collapsing optimization, and (2) GNNCONTEXT with node
collapsing optimization (see Section 3.3 for details of node
collapsing). This allows for a more comprehensive evalua-
tion of the impact of node collapsing optimization on the
overall performance.
Results. Table 3 presents the results of a comprehensive
comparison of the performance of GNNCONTEXT in code
context prediction, both with and without node collapsing
optimization, against three baselines.

In comparison to the SOTA approach for code context
prediction, GNNCONTEXT exhibits a substantial improve-
ment across all four performance metrics (MRR, R@1, R@3,
and R@5) and three prediction steps (1-step, 2-step, and
3-step), encompassing a total of 12 evaluation scenarios.
Specifically, GNNCONTEXT achieves MRR scores of 0.529,
0.563, and 0.503, and R@5 scores of 0.653, 0.686, and 0.660
for 1-step, 2-step, and 3-step predictions, respectively. The
experimental results demonstrate that GNNCONTEXT con-
sistently outperforms the baseline in code context prediction
across varying prediction steps, achieving average improve-
ments of 62.79%, 56.60%, 73.50% and 81.89% in MRR, R@1,
R@3, and R@5, respectively. One possible explanation for
why 2-step prediction outperforms both 1-step and 3-step
predictions is that it strikes an optimal balance between
prediction difficulty and input size. Specifically, 2-step pre-
diction targets one of two positive code elements with an
expanded context model containing a sufficient number of
code elements, making the prediction task less challenging
than 1-step prediction. At the same time, 2-step prediction

reduces the noise introduced by irrelevant code elements
in the larger expanded code context models used in 3-step
prediction.

In comparison to the leading SOTA approaches for bug
localization and API recommendation, GNNCONTEXT sig-
nificantly outperforms SemanticCodeBERT, which achieves
MRR scores of only 0.292, 0.252, and 0.250 across the three
prediction steps. GNNCONTEXT outperforms GAPI in 1-
step, 2-step, and 3-step predictions, particularly excelling in
the MRR and R@1 metrics. Specifically, for 1-step prediction,
GNNCONTEXT achieves substantial improvements of 66.9%
in MRR and 104.4% in R@1 compared to GAPI, which is
likely due to the integration of historical interaction data
in GNNCONTEXT. Nonetheless, for 2-step and 3-step pre-
dictions, GAPI surpasses GNNCONTEXT in R@5, indicating
that the significance of historical interaction data diminishes
with larger code contexts as the number of prediction steps
increases. The comparison results suggest the potential to
enhance the performance of GNNCONTEXT in multi-step
code context predictions through a more nuanced integra-
tion of structural code information and historical interaction
data.

Furthermore, the node collapsing optimization enhances
the performance of GNNCONTEXT, yielding improvements
of 5.8%, 8.7%, and 1.2% in MRR scores for 1-step, 2-step, and
3-step predictions, respectively. The experimental results
indicate the effectiveness of merging field nodes during node
collapsing, which leads to improvements in the performance
of code context prediction. The improvements can be at-
tributed to two key factors: first, reducing the numbers of
nodes in the expanded code context models helps alleviate
the imbalance between positive and negative nodes; second,
consolidating field nodes with less semantic information
simplifies the structure of expanded code context models,
allowing the GNN model more effectively capture mean-
ingful patterns.

Answer to RQ1: Our approach demonstrates a sig-
nificant improvement over the SOTA baseline across
1-step, 2-step, and 3-step predictions, achieving av-
erage improvements of 62.79%, 56.60%, 73.50% and
81.89% in MRR, R@1, R@3, and R@5, respectively.
Additionally, node collapsing optimization further
boosts the performance of our approach, increasing
MRR scores by 5.8%, 8.7%, and 1.2% for 1-step, 2-step,
and 3-step predictions, respectively. GNNCONTEXT
also outperforms the leading SOTA approaches for
bug localization and API recommendation.



10

TABLE 4: Evaluation results on cross-project code context prediction.

Case Category Training Set Test Set MRR R@1 R@3 R@5

Case 1 Within-Project Baselines PDE PDE 0.5310 0.3548 0.6452 0.7742
Case 2 Platform Platform 0.5119 0.3371 0.6180 0.7303

Case 3 Cross-Project Predictions Mylyn Platform 0.5898 0.4646 0.6657 0.7450
Case 4 with Smaller Training Data Mylyn PDE 0.6035 0.4774 0.6914 0.7531

Case 5 Cross-Project Predictions Mylyn+PDE Platform 0.5973 0.4844 0.6544 0.7394
Case 6 with Larger Training Data Mylyn+Platform PDE 0.6047 0.4650 0.6914 0.7654

4.6.2 RQ2: Cross-Project Prediction

To evaluate the practical value of GNNCONTEXT, we con-
ducted experiments in a cross-project setting to analyze how
different datasets impact the performance of our approach
in code context prediction.
Setup. We designed six experimental cases, as detailed in
Table 4: (1) Cases 1 and 2 serve as within-project pre-
diction baselines, where the GNN model is trained using
data from the same project. Note that the Mylyn project is
excluded from the within-project setting, as the experiment
is identical to that in RQ1. (2) Cases 3 and 4 represent
cross-project predictions, differing in test sets, but using
the Mylyn project as the training set. The Mylyn project is
selected as the training set due to its sufficient data volume.
(3) In Cases 5 and 6, we further expanded the training sets
in a cross-project setting as compared to Cases 3 and 4,
respectively, aiming to evaluate the impact of additional
cross-project training data on prediction performance. For
each project, the data was split chronologically, with the first
80% used for training and the remaining 20% reserved for
testing. Additionally, the training set was further divided
into a training set and a validation set in a 9:1 ratio for each
experimental case.
Results. Table 4 presents the results of 1-step code context
prediction across six experimental cases. For each case, the
training set, test set, and performance metrics (MRR, R@1,
R@3, R@5) are listed.
Within-Project Baselines: In Cases 1 and 2, the performance
of within-project predictions serves as the baseline. When
the GNN model is trained and tested on the same project,
it achieves solid performance, with an MRR of 0.5310 and
R@5 of 0.7742 for PDE (Case 1), as well as an MRR of 0.5119
and R@5 of 0.7303 for Platform (Case 2). The experimental
results indicate that, even within the same project, the model
is capable of predicting code context model with relatively
high effectiveness.
Cross-Project Predictions with Smaller Training Data: Case
3 and 4 involve cross-project predictions, where the model
trained on data from the Mylyn project is tested on the
Platform and PDE projects, respectively. The two cases indi-
cate the ability GNN model to generalize when applied to a
different project. In Case 3, the MRR increases to 0.5898, and
R@5 to 0.7450, outperforming the within-project baseline
in Case 2, demonstrating that the Mylyn project provides
sufficient information for predicting relevant code elements
in code context models of the Platform project. Similarly,
Case 4 achieves an MRR of 0.6035 and R@5 of 0.7531 for
PDE, surpassing the baseline performance in Case 1. The
experimental results indicate that cross-project code context

prediction can be highly effective when the training data of
GNN models is sufficiently rich and relevant.
Cross-Project Predictions with Larger Training Data: In
Case 5 and 6, the training set is expanded by combining
Mylyn with PDE for Case 5 and with Platform for Case 6.
The two cases aim to test whether increasing the size of the
training set with data from another project improves cross-
project predictions. The experimental results indicate slight
improvements in performance compared to Case 3 and 4.
For example, in Case 5, where the model is trained on “My-
lyn + PDE” and tested on Platform, the MRR rises to 0.5973,
slightly higher than the 0.5898 seen in Case 3. Similarly, in
Case 6, the MRR improves to 0.6047 when testing on PDE,
compared to the 0.6035 in Case 4. The experimental results
suggest that adding more data, particularly from a different
project, marginally improves the predictive power of GNN
models.

We also made several counterintuitive observations. In
Cases 1 and 2, with smaller training sets, the prediction
outperforms the within-project prediction for the Mylyn
project (0.681 in Table 3) in terms of R@5, despite the larger
training set in the latter case. The observation suggests
that, contrary to intuition, smaller training sets may yield
better performance in code context prediction, indicating
that model generalization and reduced overfitting may be
more critical than simply increasing the training data size.
Furthermore, in Cases 3 and 4, where Mylyn serves as the
training set and Platform and PDE are used as test sets for
cross-project predictions, the model outperforms the 1-step
within-project prediction for the Mylyn project across all
metrics (Table 3). This counterintuitive observation suggests
that cross-project prediction could be more effective than
within-project prediction, potentially due to statistical bias
introduced by the relatively small test sets for the PDE and
Platform projects.

Answer to RQ2: GNNCONTEXT exhibits promising
performance in cross-project settings. Cross-project
code context predictions even outperform within-
project predictions, especially when the training data
comes from a project with rich and highly relevant
historical data. Expanding the training set with addi-
tional data yields modest performance gains.

4.6.3 RQ3: Ablation Study

We altered different components of GNNCONTEXT to eval-
uate their individual contributions and to examine how
various design decisions impact the performance of GN-
NCONTEXT, as measured by the evaluation metrics. We
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used the same dataset as in RQ1 (Section 4.6.1) for the
ablation study.
Setup. To evaluate the impact of different code represen-
tations in node embedding on code context prediction, we
replace our code encoder (BGE embedding) with CodeBERT
embedding [54], a widely-used bimodal pre-trained model
for both programming and natural languages. This allows
us to evaluate the contribution of alternative embedding
methods to the overall performance of GNNCONTEXT.

For graph learning, we first construct a variant of our
approach that excludes the GNN graph encoder. The variant
directly compares the node embeddings of seed and non-seed
nodes, recommending the non-seed nodes most similar to
the seed nodes for code context prediction. Next, we replace
our graph encoder (RGCN) with three well-established
GNN models—GCN [19], GAT [22], and GraphSAGE [21]
to evaluate the contribution of graph learning in enhanc-
ing code context prediction. GCN scales linearly with the
number of graph edges, learning hidden representations
that incorporate both the local graph structure and node
features. GAT introduces attention mechanisms, allowing
the model to assign different importance weights to each
neighboring node. GraphSAGE samples a fixed-size subset
of neighbors for each node, aggregating their features to
improve scalability without relying on all neighbors.
Results. Table 5 presents how each node embedding tech-
nique and GNN model combination performs in terms of
MRR, R@1, R@3, and R@5.
CodeBERT: Using no GNN at all results in the lowest MRR
score of 0.333, suggesting that while CodeBERT is a strong
bimodal pre-trained model for programming and natural
languages, it lacks the ability to fully capture the structural
information inherent in code context models when used
alone. The introduction of GNN models significantly boosts
performance, with RGCN being the most effective, achiev-
ing an MRR of 0.476. The experimental results suggest the
importance of incorporating relational information in code
context predictions, as RGCN is specifically designed to
model such information. On the other hand, GCN shows
a moderate improvement (MRR 0.367), while GAT and
GraphSAGE underperform, with MRR scores of 0.324 and
0.347, respectively. The experimental results indicate that
attention mechanisms in GAT and sampling strategies in
GraphSAGE are less effective when used with CodeBERT
embeddings, potentially because they do not fully exploit
the pre-trained representations.
BGE Embedding: In contrast, BGE embedding consistently
outperforms CodeBERT across all GNN models. Even with-
out a GNN model, BGE embedding achieves an MRR of
0.442, which is higher than 0.333 of CodeBERT in the
same setup, demonstrating that BGE embedding is better
suited for representing code context even without additional
graph-based learning. The combination of BGE embedding
with RGCN produces the highest MRR, reaching 0.529.
GCN and GraphSAGE also perform relatively well with
BGE embedding, achieving MRR scores of 0.453 and 0.449,
respectively. Interestingly, GAT yields the lowest MRR of
0.334, mirroring its poor performance with CodeBERT, in-
dicating that attention-based mechanisms may not provide
a significant advantage in the code context prediction task
when compared to other GNN architectures.

TABLE 5: Evaluation results on different node embedding
techniques and GNN models.

Node Embedding GNN Models MRR R@1 R@3 R@5

CodeBERT

w/o GNN 0.333 0.218 0.370 0.445
RGCN 0.476 0.368 0.510 0.571
GCN 0.367 0.250 0.408 0.470
GAT 0.324 0.266 0.403 0.478
GraphSAGE 0.347 0.232 0.374 0.461

BGE Embedding
w/o GNN 0.442 0.315 0.498 0.581
RGCN 0.529 0.419 0.573 0.653
GCN 0.453 0.323 0.517 0.596
GAT 0.334 0.271 0.424 0.485
GraphSAGE 0.449 0.321 0.502 0.607

TABLE 6: Effect of number of GNN layers in graph learning.

# Layers MRR R@1 R@3 R@5

1 0.505 0.384 0.559 0.648
2 0.519 0.406 0.567 0.658
3 0.529 0.419 0.573 0.653
4 0.528 0.413 0.575 0.665
5 0.544 0.440 0.576 0.660

Answer to RQ3: BGE embedding consistently out-
performs CodeBERT across all GNN models, indi-
cating the inherent ability of BGE embedding to
capture code context features. RGCN tends to be
the most effective model for both embeddings, with
BGE+RGCN achieving the highest MRR (0.529), high-
lighting the capacity of RGCN to integrate node
embeddings with relational graph structures.

4.6.4 RQ4: Sensitivity Analysis
We performed a further investigation into the impact of dif-
ferent hyperparameters on the performance of GNNCON-
TEXT. For consistency, we utilized the same dataset as in
RQ1 (Section 4.6.1).
Setup. The investigation focused on two aspects of hy-
perparameters: (1) the number of RGCN layers, ranging
from 1 to 5, which denotes propagation iterations, and (2)
the margin hyperparameter in the loss function used for
contrastive graph learning. Specifically, we evaluated the
performance of our approach with the positive contrastive
loss margin (mpositive) in the range of 0.8 to 1, and the
negative contrastive loss margin (mnegative) from 0 to 0.2.
Results. Table 6 presents the experimental results of how
varying the number of GNN layers impacts the performance
of our approach in terms of MRR, R@1, R@3, and R@5.
The results demonstrate a clear trend where increasing the
number of GNN layers contributes to improvements in the
ability of our approach to predict code contexts. As the GNN
model progresses from one to three layers, there is a steady
improvement in MRR and R@1, reflecting enhanced effec-
tiveness in identifying the most relevant code elements. The
improvement also indicates that deeper GNN architectures
can better capture hierarchical and complex relationships in
graphs, which are crucial for accurately modeling code con-
texts. However, the improvements in R@3 and R@5 are rel-
atively modest as the number of layers increases, especially
beyond three layers. The plateauing effect in improvements
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TABLE 7: Effect of different margin values in the loss func-
tion of contrastive graph learning.

mpositive mnegative MRR R@1 R@3 R@5

1.0
0 0.529 0.419 0.573 0.653

0.1 0.528 0.419 0.567 0.652
0.2 0.532 0.424 0.575 0.648

0.9
0 0.528 0.419 0.568 0.655

0.1 0.530 0.417 0.584 0.663
0.2 0.532 0.421 0.586 0.661

0.8
0 0.528 0.414 0.579 0.658

0.1 0.531 0.416 0.587 0.658
0.2 0.535 0.424 0.589 0.668

suggests that, while the GNN model in our approach gains
in depth and complexity with additional layers, its ability
to capture relevant nodes in code context models beyond
the top-ranked predictions does not scale proportionally. In
summary, the optimal number of layers for our approach
appears to be between three and five, where the tradeoff
between depth and generalization is balanced.

Table 7 presents the impact of different margin values
for positive and negative samples in the loss function used
for contrastive graph learning on the performance of our
approach. On the one hand, smaller mpositive values (closer
to 0.8) generally yield better recall, particularly in R@3
and R@5, indicating that overly large positive margins may
cause our approach to separate positive and negative sam-
ples too aggressively, reducing its ability to generalize across
a larger set of relevant code elements. On the other hand, in-
creasing mnegative values generally improves performance,
especially for MRR and R@1, suggesting that a higher nega-
tive margin helps our approach better discriminate between
positive and negative samples, leading to more effective
retrieval of relevant code elements in code context models.
Consequently, the configuration with mpositive = 0.8 and
Mnegative = 0.2 yields superior performance, indicating
that the margin combination optimizes the separation of
positive and negative samples, thus preserving robust per-
formance across the evaluation metrics.

Answer to RQ4: Increasing the number of GNN
layers enhances the performance of GNNCONTEXT,
with peak MRR and R@1 achieved at five layers.
However, the gains in recall metrics (R@3 and R@5)
plateau beyond three layers. Reducing positive mar-
gins enhances R@3 and R@5, whereas raising nega-
tive margins boosts MRR and R@1. By employing a
configuration of five stacked GNN layers, along with
a positive margin of 0.8 and a negative margin of 0.2,
GNNCONTEXT achieves optimal performance across
the evaluation metrics.

4.6.5 RQ5: Effect of Initial Code Context Model Design
In this RQ, we investigated the impact of different choices of
initial code context models on the 1-step code context pre-
diction performance of GNNCONTEXT, using the identical
dataset utilized in RQ1 (Section 4.6.1).
Setup. We considered three design choices for the initial
code context models, with the setup for each detailed below:

TABLE 8: Impact of access order of code elements in initial
code context models.

Setting MRR R@1 R@3 R@5

Chronological order 0.529 0.408 0.578 0.665
Random order #1 0.529 0.419 0.573 0.653
Random order #2 0.521 0.404 0.568 0.658
Random order #3 0.522 0.413 0.563 0.653

TABLE 9: Impact of incorporation of developers’ previous
experience into initial code context models.

Setting MRR R@1 R@3 R@5

Experience informed 0.308 0.176 0.328 0.473
Non-experience informed 0.734 0.649 0.786 0.840

1) Access order of code elements. We compared the predic-
tion performance of GNNCONTEXT using two selection
strategies for the seed elements in a code context model R,
which consists of size code elements: (1) We selected the
first size−1 elements according to the chronological order
in the corresponding interaction history; (2) We randomly
selected size− 1 code elements, with the process repeated
three times.
2) Model size. We compared the prediction performance of
GNNCONTEXT with initial context models of varying sizes,
where 10% to 90% of the code elements in each code context
model R were randomly selected, with a 10% interval. The
varying model sizes correspond to different stages of a
programming task: smaller models (10-30%) simulate the
early stages, while larger models (70-90%) represent the later
stages.
3) Incorporation of previous experience of individual
developers. We built initial code context models based on
what developers had already accessed within the previous
14 days from the developing time of each code context
model, which represents a typical development cycle in
agile software development [55]. Specifically, for each code
context model, we selected code elements that appeared in
both the code context model and the recent 14-day inter-
action histories of the developer as the initial code context
model. For comparison, we also built non-experience-based
initial code context models by randomly selecting the same
number of code elements as the corresponding experience-
based initial code context models from each code context
model.
Results. Table 8 presents the evaluation results regarding
the impact of the access order of code elements in the initial
code context models on the prediction performance of GN-
NCONTEXT. The prediction performance remains largely
consistent across varying access orders, suggesting that the
order in which code elements are accessed has minimal
effect on the performance of our approach. A possible
explanation is that developers begin with any code element
relevant to a task and navigate bidirectionally between
related elements, thereby diminishing the significance of
their access order.

Figure 4 presents the evaluation results regarding the
impact of initial code context model sizes on the prediction
performance of GNNCONTEXT. The top-k recall values
exhibit a consistent rise-and-fall trend as the size of the
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Fig. 4: Impact of initial code context model sizes.

initial code context model increases. For smaller initial
code context models (10%-30%), recall values (R@1, R@3,
R@5) improve with increasing model size, indicating the
potential effectiveness of our approach in the early stage
of a programming task. As the model size reaches 40%-
60%, recall values peak, reflecting the optimal performance
of our approach. However, beyond this range, prediction
performance begins to stabilize; further increases in model
size yield diminishing returns. When the initial code con-
text model size exceeds 60%, recall values decline, with
R@1 experiencing a notable drop. Despite the increased
information provided by larger initial code context models,
our approach becomes less focused, struggling to prioritize
relevant code elements.

Table 9 presents the evaluation results regarding the im-
pact of incorporating developers’ previous experience into
initial code context models on the prediction performance
of GNNCONTEXT. The results indicate that the experience-
informed setting for initial code context models consistently
underperforms across all metrics, compared to the non-
experience-informed setting, suggesting that the incorpora-
tion of developers’ prior experience does not improve, and
may even hinder the performance of our approach. While
prior experience of developers might seem beneficial, it may
not always align with the specific task at hand, resulting in
reduced focus on the most relevant code elements, thereby
hindering the ability of our approach to make accurate
predictions.

Answer to RQ5: The order in which code elements
are accessed has a negligible impact on the perfor-
mance of GNNCONTEXT. The top-k recall values
demonstrate a consistent rise-and-fall trend as the
size of the initial code context model increases. The
integration of developers’ prior experience does not
lead to performance improvements and may, in fact,
impede the performance of GNNCONTEXT.

5 DISCUSSION

We reflect on the reasons behind the effectiveness of our
approach, and identify opportunities for improvement.

5.1 Context Nodes Difficult to Recall
We investigated how well our approach can recall relevant
context nodes in the code context models as the number

Fig. 5: Top-k recall rates of code context prediction in GN-
NCONTEXT.

of recommendations (k) increases. For each value of k (k
= 1, 10, 20, ..., 100), we computed the recall rate R@k,
which is detailed in Fig. 5. The y-axis ranges from 0.4 to
1.0, where a value of 1.0 indicates perfect recall, meaning
that all context nodes are retrieved. The plot in Fig. 5 starts
with a lower recall rate slightly above 0.4 for top-1 results,
and progressively increases to near 1.0 as k approaches
100, indicating better recall rates with more top-k results.
Nonetheless, our approach does not achieve perfect recall at
k = 100 (R@100=0.992), suggesting that there are still some
context nodes that are not retrieved.

We further examined the five tasks with context nodes
difficult to recall from the test set (623 tasks) from the
Mylyn project. First, we observed larger sizes of expanded
code context models for the five tasks as compared to the
remaining in the test set, with an average of 248 nodes
(minimum: 168, median: 261, maximum: 283). We then
categorized the tasks with respect to the syntactic features
of their context nodes difficult to recall into two types: (1)
A function node, which is declared in a class node (seed)
that owns numerous functions (4 tasks); and (2) A function
node, which is called by a function node (seed) that calls
numerous functions (1 task). The context nodes difficult to
recall tend to have similar embeddings as the relative non-
context nodes of the corresponding code context models
due to their similarity in their syntactic features. Future
work could focus on enhancing the discriminative power
of embeddings for functions that are declared in the same
class or called by the same function. This might involve
developing more sophisticated embedding techniques or
incorporating additional contextual information to better
distinguish between highly similar context and non-context
nodes.

5.2 More Granular Node Classification

We explored the reasons why our approach outperforms
the SOTA approach in node embedding. Our hypothesis
was that our approach captures richer features of code
elements in the code context models through effective code
representation learning. Specifically, from the Mylyn dataset
used in RQ1, we selected the class nodes labelled with
COMMAND as their stereotypes in the SOTA approach. We
applied a kNN clustering algorithm to these nodes [56],
iterating through cluster numbers from 2 to 10 to determine
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the optimal cluster number. Consequently, two distinct clus-
ters were identified for the class nodes with the COMMAND
stereotype, with a Silhouette score of 0.972 [57], suggesting
that our approach enables a more granular classification of
nodes in the code context models as compared to the SOTA
approach. Future work could further explore advanced code
representation learning models to capture more nuanced
representations of code elements in code context models,
potentially incorporating additional information such as
code dependencies or execution flow.

5.3 Cross-file Code Context Prediction

Navigating multiple source code files without direct struc-
tural dependencies presents a considerable challenge for
developers during programming tasks. To understand the
potential of GNNCONTEXT in such a challenging scenario,
we evaluated its performance on 344 code context models
that include cross-file code elements from the Mylyn project.
GNNCONTEXT achieves R@1 of 0.372, R@3 of 0.497, R@5 of
0.573, and MRR of 0.468, which are significantly lower than
the corresponding metrics for the remaining code context
models comprising within-file code elements, where R@1
= 0.477, R@3 = 0.667, R@5 = 0.753, and MRR = 0.603. The
evaluation results indicate that GNNCONTEXT performs
reasonably well in both within-file and cross-file scenarios,
but there is significant room for improvement in the future,
particularly in handling cross-file code contexts where its
performance lags behind within-file predictions.

6 THREATS TO VALIDITY

The threats to internal validity stem from two factors. First,
the expansion of code context models relies on ASTs and
CGs, which may miss certain structural relationships in
source code (e.g., data-flow). Additionally, static analysis
can overestimate call relationships, leading to the inclu-
sion of irrelevant code elements in expanded code context
models. Future work could focus on integrating more so-
phisticated program analysis techniques, such as enhanced
data-flow analysis and hybrid static-dynamic techniques,
to capture a broader range of relationships and improve
precision in code context modeling. Second, design choices
in our approach were evaluated using two node embedding
models and four GNN models, but there may be more
suitable strategies that could further improve performance.
Future research could explore alternative node embedding
techniques and experiment with advanced GNN architec-
tures.

The main threat to external validity lies in the gen-
eralizability of our experiment results. We analyzed 5,256
code context models from three distinct Java open-source
projects, using a combined dataset for experimental evalua-
tion. While the dataset is specific to Java code, this reflects a
difference at the dataset level, and the experimental results
might vary when applied to other programming languages
(e.g., C/C++). However, our approach is designed to be
easily adaptable to different programming languages, due to
its reliance on generalizable code representation techniques.
Due to the limited availability of interaction history data
for software projects, the evaluation was conducted using

only three Eclipse open-source projects. These three projects,
however, have been extensively employed in prior studies
on code edit recommendation (e.g., [4], [39]), thereby pro-
viding a solid foundation for the generalizability of our ap-
proach. Although the experimental results of our approach
may vary across different software projects, our approach
can be applied to any project once its interaction history
becomes available.

7 RELATED WORK

Some researchers conducted empirical studies to investigate
code contexts of software development tasks [1], [58], [59].
The findings include developers form code contexts in their
minds when performing software development tasks [1],
they tend to frequently switch code contexts between var-
ious activities [58], and they perceive context switch leads
to a loss of productivity [58]. Moreover, Souti et al. [59]
identified six patterns of how developers organize and
manage their code contexts during development tasks.

Previous studies have proposed various tools to help
developers explicitly capture code contexts after the relevant
code elements have been identified or navigated during
their work [7], [8], [9]. Concern Graphs allow developers to
manually capture relevant code elements and their relation-
ships within the code context [7]. Code Bubbles introduces
an innovative IDE interface that enables developers to create
views of code fragments related to the tasks being per-
formed [8]. Code Basket provides a canvas where develop-
ers can organize code elements, thereby externalizing their
mental models [9]. Unlike such tools that emphasize the
explicit capture of code contexts, our paper seeks to facilitate
the effective prediction of code context models, with the
potential for the proactive formation of code context models.

Other previous studies focus on automating the forma-
tion of code context models, e.g., by suggesting relevant
code elements in code context models. Some studies use the
structural information of source code to make code context
suggestions, such as Suade [60]. Other studies leverage
development task history data to recommend relevant code
elements [4], [5], [10]. In a recent study, Wan et al. [11]
combined structural and interaction history data, leveraging
the topological patterns of code elements for code context
prediction. Our approach shares similarities with that of
Wan et al. in combining structural and interaction history
data. However, in contrast to their approach, we leverage
code representation models and GNNs to capture syntactic,
semantic, and contextual information in code context mod-
els, enabling more effective prediction.

8 CONCLUSION AND FUTURE WORK

This paper presented a novel approach for predicting code
contexts using GNNs, named GNNCONTEXT, which lever-
ages code representation learning models to capture syn-
tactic and semantic features of code elements, alongside
GNNs to capture structural and contextual interdependen-
cies among code elements in code context models. We
compile a dataset consisting of 3,879 code context models
derived from historical data of three Eclipse open-source
projects to evaluate the effectiveness of our approach. The
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evaluation results demonstrate that GNNCONTEXT signif-
icantly outperforms the state-of-the-art approach, achiev-
ing substantial improvements in mean reciprocal rank and
top recall rates. Future work could explore more sophis-
ticated embedding techniques and incorporate additional
information, such as code dependencies, execution flow,
and the evolution of code contexts throughout software
development, to improve the performance of code context
prediction.
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Y. Bengio, “Graph Attention Networks,” International Conference
on Learning Representations, 2018, accepted as poster. [Online].
Available: https://openreview.net/forum?id=rJXMpikCZ

[23] H. N. Phan, H. N. Phan, T. N. Nguyen, and N. D. Bui, “Repohyper:
Better context retrieval is all you need for repository-level code
completion,” arXiv preprint arXiv:2403.06095, 2024.

[24] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng,
L. Bian, and Z. Wang, “Combining graph-based learning with
automated data collection for code vulnerability detection,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 1943–
1958, 2020.

[25] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” in Proceedings of the
28th international conference on program comprehension, 2020, pp.
184–195.

[26] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, X. Wu, C. Tao, T. Zhang, and
W. Liu, “Learning to detect memory-related vulnerabilities,” ACM
Transactions on Software Engineering and Methodology, vol. 33, no. 2,
pp. 1–35, 2023.

[27] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: statement-
level vulnerability detection using graph neural networks,” in
Proceedings of the 19th international conference on mining software
repositories, 2022, pp. 596–607.
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APPENDIX A
CODE CONTEXT MODEL FORMATION

Fig. 6 provides an overview of the process used to curate
the dataset.

A.1 Data Extraction
The top part of Fig. 6 describes the extraction of data
from interaction histories of each project we considered. The
Eclipse Mylyn tool9 records interaction histories as a devel-
oper works on the code base of the project. Each interaction
history includes a sequence of interaction events with code
elements that are viewed and edited by the developer.
Mylyn captures multiple attributes of an interaction event10,
among which we consider four attributes as shown in
Table 10. Mylyn enables one or more interaction histories
to be associated with each task performed by developers on
a project. The interaction histories are stored with the tasks
recorded in the Eclipse Bugzilla system.

TABLE 10: Information captured in an interaction event.

Attribute Description

StartDate Time stamp for the occurrence of the
event.

Kind Determines the type of interaction that
took place, e.g., edit, selection, and com-
mand events that initiate from the user.

StructureHandle A unique identifier for the element being
interacted with.

StructureKind The content type of the element being
interacted with, e.g., Java code elements
and XML files.

Filtering Bug Reports. To gather interaction histories, we
first collected 8,180, 47,918, and 8,372 FIXED bug reports of
the Mylyn, Platform, and PDE projects, respectively, from
the Eclipse Bugzilla bug tracker up to September 2023.
We further filtered the bug reports that did not have one
or more interaction histories associated with the reports,
leaving 4,723 bug reports to consider. The bug reports have
an average of 1.4 interaction histories attached (Min: 1, Max:
42, Median: 1, SD: 1.1).
Extracting Interaction Histories. We extracted the final
interaction history associated with each of these bug reports,
which is an archived XML file.

A.2 Code Context Model Formation
The bottom part of Fig. 6 describes the formation of code
context models from the collected data.
Breaking Interaction Histories. For code context models,
we are interested in representing the models that developers
usually keep in their minds as they work with code for a
task. As a result, we need to break interaction histories into
units that more likely represent a period of time in which a
developer is working with the code and for which they may
have formed a working mental code context model. To cap-
ture such units, we use the concept of a working period [11],
consisting of the portion of the interaction history within a

9. https://www.eclipse.org/mylyn
10. https://wiki.eclipse.org/Mylyn/Integrator Reference

continuous period. Specifically, for each interaction history,
we broke every two consecutive interaction events into two
working periods if the time gap between their occurrence
is over t, where t is determined by a sensitivity analysis.
Our sensitivity analysis examines a range of t, from 1 hour
(as observed by a previous study [61]) to 5 hours, with
intervals of 0.5 hours. We evaluate the number of working
periods derived from the interaction histories for different
values of t. The sensitivity analysis reveals that the number
of working periods decreases as t increases and stabilizes
once t exceeds 2.5 hours. Consequently, we selected 3 hours
as the value for t to break interaction histories into working
periods.
Extracting Code Elements. We only considered interaction
histories with events directly recording interaction with
code elements (“selection” and “edit” events about class,
method, and field code elements), as opposed to documen-
tation or XML files. As a result, we have 6,126 working
periods left. In addition, we removed 258 outlier working
periods with their number of code elements lying outside
the interval [Q1 − 3IQR, Q3 + 3IQR]11. For example, for
the Mylyn project, Q1 = 5, Q3 = 30, and IQR = 25.

Structural dependencies between code elements are not
available in interaction histories. To capture structural in-
formation, we need to be able to relate each interaction
history to the version(s) of code active when the interaction
history was collected. Thus, for each working period, we
1) resolved the git repository for extracted code elements, 2)
extracted event timestamps from the interaction history, and
3) associated each working period with code snapshot(s).
Resolving Git Repositories. We resolved git repositories
of accessed code elements for each working period as the
project code is stored across several git repositories. This
step excluded 1,724 working periods that access only coarse-
grained code elements (directory or file), which lack struc-
tural relations, or involve code elements from unavailable
code repositories (e.g., dependency libraries), or access only
code elements that were not committed to the repository
when the interaction history was collected. For the exam-
ple working period in Fig. 6, we resolved two related git
repositories, mlylyn.tasks and mylyn.commons.
Extracting Event Timestamps. We extracted the StartDate
attribute of each interaction event from an interaction his-
tory as the timestamp of the interaction event, and identified
the timestamp of the first event, which can help locate
the commit(s) of related repositories before each working
period. In terms of the example working period in Fig. 6, the
timestamp of the first event is 2010-02-21 11:35:53.
Associating with Commit(s). By using the timestamp of
the first event in an interaction history, we associated the
interaction history with one or multiple commits in the
related git repositories. Specifically, we retrieved the most
recent commit in the git repository prior to the timestamp
of the first event in the interaction history. In terms of the
example working period in Fig. 6, we associated it with two
commits, the commit 78457484 in mlylyn.tasks and the
commit 3ead864c in mylyn.commons.

11. Q1 is the 25th quartile; Q3 is the 75th quartile; IQR (Interquartile
Range) is defined as the difference between the 25th and 75th quartile
and served as a measure of statistical dispersion.

https://www.eclipse.org/mylyn
https://wiki.eclipse.org/Mylyn/Integrator_Reference
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Data Extraction
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Fig. 6: Process of dataset curation.

Running Doxygen. We used Doxygen [41] to identify struc-
tural relations between code elements. Specifically, we run
Doxygen for each code snapshot of each commit associated
with the working period. In this paper, we consider four
structural relations: declares, calls, inherits, and implements.
Figure 6 illustrates that using Doxygen we identify two
declares relations between the code elements.
Forming Code Context Models. We formed a code context
model for each working period. The extracted code elements
form the nodes of the code context model for a working
period, while the identified structural dependencies form
the edges of the code context model. Fig. 6 presents the
code context model for the example working period, with
four nodes and two directional edges labeled by structural
relations. This code context model, which consists of two
connected components, is the only working period associ-
ated with the Bug Report 303431 in the Mylyn project.
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